
South Westphalia University of Applied Sciences
Campus Hagen, Germany
Department of Technical Economics (TBW)

Machine Learning

Master courses Informatics and Business &

Wirtschaftsingenieurwesen

Lecture Notes

Andreas de Vries

Version: April 12, 2024

This work underlies the Creative Commons License CC BY 4.0
(http://creativecommons.org/licenses/by/4.0/deed.de)

http://www.fh-swf.de
http://creativecommons.org/licenses/by/4.0/deed.de
http://creativecommons.org/licenses/by/4.0/deed.de

Contents

I Foundations 6

1 Probability theory 7
1.1 Random variables and probabilities . 7
1.2 Bayes’ Theorem . 10
1.3 * Conditional independence . 12
1.4 Problems . 15

2 Models and theories 16
2.1 Methods of logical inference . 17
2.2 Theories . 18
2.3 What exactly is a model? . 21
2.4 Occam’s razor and model selection . 25
2.5 Problems . 28

3 Theoretical foundations of machine learning 30
3.1 What is machine learning? . 30
3.2 Statistical variables . 31
3.3 Statistical models . 33
3.4 Methods of machine learning . 35
3.5 Challenges of machine learning . 39

4 Introduction to Python 42
4.1 Basic language elements . 43
4.2 Control structures . 45
4.3 Libraries and modules . 48
4.4 Problems . 52

II Data analysis 55

5 Regression 56
5.1 Residuals and scoring of fitted regression models 57
5.2 Linear regression in one dimension . 59
5.3 Multiple linear regression . 61
5.4 Nonlinear regression . 64
5.5 Problems . 74

2

Machine Learning 3

6 Data analysis with Python 76
6.1 Parametric statistical models in Python 76
6.2 Principal component analysis . 79
6.3 The pipeline: automating data analysis 86

III Time series 90

7 Time series analysis 91
7.1 introduction . 91
7.2 Stochastic processes as the basis of time series 93
7.3 Causal linear processes . 94
7.4 The random walk hypothesis in economics 95
7.5 Problems . 96

8 Autoregressive models 98
8.1 Stochastic processes in economics . 98
8.2 Definition and properties of autoregressive processes 99
8.3 Causality of autoregressive processes . 100
8.4 Problems . 103

9 Autoregressive models with moving average 104
9.1 MA models . 105
9.2 ARMA . 107
9.3 Estimation of the order of ARMA models 109

10 Trends and periods: SARIMA models 114
10.1 Time series with trends: Integrated processes 114
10.2 Approach to trends . 115
10.3 SARIMA . 116
10.4 SARIMA models in statsmodels . 117
10.5 Parameters to generate a SARIMAX model 118
10.6 Fitting a SARIMAX model . 119
10.7 Predictions of a SARIMAX model . 119
10.8 Choosing a SARIMA model . 120
10.9 Problems . 121

A Appendix 122
A.1 Solutions to selected problems . 122
A.2 Heuser about the Samuelson multiplyer 131

Bibliography 132

Internet References 135

Preface

These lecture notes serve as the basis for the Machine Learning course of the Master’s
degree programs in Informatics and Business and Wirtschaftsingenieurwesen (Business
Administration and Engineering) at University of Applied Sciences Südwestfalen, Campus
Hagen. Machine learning as a term is hype. There is a veritable abundance of good
literature, endlessly many textbooks — so why these lecture notes?

Well, exactly because there is so much good literature and sources. One of the main
problems in designing this course was to collect the material in such a way that it could be
covered in one semester. Another problem was to bring the many approaches from quite
different schools and disciplines into a unified formalism. The latter sounds rather simple
— but it is not.

A one-semester course on machine learning can only provide a first insight into the
wide field. Nevertheless, it was the goal from the beginning to adequately convey this
topic to the students, since it is currently essential in business and science and will become
presumably increasingly more important in the future. First of all, to achieve this goal
there is some theory to be taught to a sufficient degree. Long and tedious literature
researches are not effective for an introduction; the theory should be presented as precisely
and concisely as possible, but as much as necessary. In order to present the material,
emphasis was also placed on a uniform formalism. The devil is in the details here, after
all, the variable 𝑥 may have a completely different meaning in the formalism commonly
used in data analysis than it does in time series analysis.1

Therefore these lecture notes! As readers, judge at the end whether it has succeeded.

The contents. The course is basically divided into the following parts, with the first
parts providing the methodological and theoretical tools that are to be applied in the last
parts:

1. Introduction to Python

2. Statistical models

3. Data analysis (especially regression, principal component analysis, naive bayes
classification)

4. Time series analysis

From my point of view, the role of statistical models cannot be overestimated, because
they form the logical and formal brackets for all machine learning approaches, even those
not mentioned here.

The form of teaching. The theory is quite extensive and is sketched in some lectures.
The main part of the course, however, is strongly project-based teaching, an approach that
has proven very successful for programming-related subjects in general.

1If, nevertheless, contradictions are observed in the formalism of this lecture notess, please let me know!

4

Machine Learning 5

References. The literature supplementing this lecture notes includes introductions to
the underlying mathematics and to the programming of the mathematical procedures in
Python. We recommend for instance:

• For the mathematics part: Backhaus et al. (2016), Backhaus et al. (2015), Cowpert-
wait and Metcalfe (2009), Downey (2011), Handl and Kuhlenkasper (2017), Hastie
et al. (2009), James et al. (2013), K. P. Murphy (2012), Palma (2016), Sen and
Srivastava (1990), and Tabachnick and Fidell (2018);

• for the programming part VanderPlas (2018), as well as the API documentations
of the Python libraries Scikit-Learn (https://scikit-learn.org/) and Statsmodels
(https://www.statsmodels.org/);

• and for both parts Denis (2021) and Subasi (2020).

Hagen,
April 2024 Andreas de Vries

https://scikit-learn.org/
https://www.statsmodels.org/

Part I

Foundations

6

1
Probability theory

Overview
1.1 Random variables and probabilities . 7
1.2 Bayes’ Theorem . 10
1.3 * Conditional independence . 12
1.4 Problems . 15

This chapter devotes some time to designations and basic notions of probability theory
which will be used in the sequel. In the best case it might be a simple refreshment of your
knowledge about stochastics, but at least it clarifies the notations.

Historically, probability theory was initiated in 1654 by the French Salon theorist
Antoine Gombaud, who called himself Chevalier de Méré, posing some questions about
gambling which were then tackled by the two mathematicians Pierre Fermat and Blaise
Pascal in a series of letters. Based on their results, Christiaan Huygens published the
first systematic treatise on probability theory in 1657. About half a century later, Jakob
Bernoulli continued Huygens’s work and published a treatise mainly on combinatorics in
1713. Shortly after the French Revolution, in 1795, Pierre-Simon Laplace released the
seminal textbook Théorie analytique des probabilités. The strict mathematical foundation
of probability theory was challenged as the sixth out of the famous 23 problems by David
Hilbert in 1900, and Kolmogorov developed the final axiomatic approach in his article
“Grundbegriffe der Wahrscheinlichkeitsrechnung” in the journal Ergebnisse der Mathe-
matik 2, Heft 3 (1933) which in fact established probability theory as a special area of
measure theory.1

1.1 Random variables and probabilities
The notion of random variable is central in probability theory. Sloppily said, a random random

variable 𝑋variable 𝑋 is a function assigning randomly an outcome from given a sample space to a
real number 𝑥.2 In other words, the values of a random variable 𝑋 depend on outcomes 𝜔

1Bandelow (1989):§1.
2Bauer (1991):p. 14.

7

8 Andreas de Vries: Machine Learning

of a random phenomenon of a sample space Ω:

𝑋 : Ω → R, 𝜔 ↦→ 𝑋 (𝜔) = 𝑥 (1.1)

Now, the probabilities of the outcomes in the sample space are inherited to the random
variable, and we designate 𝑃(𝑋 = 𝑥) for the probability that the random variable 𝑋 takes
on the value 𝑥. Therefore we have especially 0 ≦ 𝑃(𝑋 = 𝑥) ≦ 1. In machine learning,probability

𝑃 (𝑋 = 𝑥) the sample space usually is a finite set, and so is the image of the random variable. The
values 𝑋 can thus be represented by 𝒳 = {𝑥1, . . . , 𝑥𝑁}, and the respective probabilities
𝑝1, . . . , 𝑝𝑁 are given by

𝑝𝑖 = 𝑃(𝑋 = 𝑥𝑖) and satisfy 𝑝𝑖 ≧ 0,
𝑁∑︁
𝑖=1

𝑝𝑖 = 1. (1.2)

We often will use briefer notations and write 𝑃(𝑥) or 𝑃(𝐴) instead of 𝑃(𝑋 = 𝑥), wherebrief notation
𝑃 (𝑥) , 𝑃 (𝐴) 𝐴 means the statement “𝑋 = 𝑥”, or equivalently 𝐴 = “𝑋 takes on the value 𝑥”. Sometimes

we abbreviate even complex statements by a single capital letter such as 𝐴, 𝐵, Note
that a statement can attain one of the values true or false.

Example 1.1. (Die roll) A typical example of a random variable is the result of rolling
a die: Here the sample space consists of 6 possible outcomes. If for instance 𝑋 is the
random variable assigning the result of a die roll 𝜔 modulo 4, we obtain the following
table of values:

Number of pips 𝜔 1 2 3 4 5 6
𝑋 (𝜔) 1 2 3 0 1 2 (1.3)

Thus the probability distribution reads

𝑥 0 1 2 3
𝑃(𝑋 = 𝑥) 1

6
1
3

1
3

1
6

0 1 2 3
0

0.1

0.2

0.3

x

P
(X

=
x)

(How can we get these values? Cf. exercise 1.1.) □

If 𝒱 is a subset of the sample space, thenprobability of a
subset

𝑃(𝒱) = 𝑃(𝑥 ∈ 𝒱) =
∑︁
𝑥∈𝒱

𝑃(𝑋 = 𝑥). (1.4)

If 𝒱 is the total sample space, we have 𝑃(𝒱) = 1.

Example 1.2. (Letters in a document) Another example is a letter that is randomly selected
from an English document. There are 27 letters: a–z, and a space character ‘–’. Graphically
these probabilities are shown in Figure 1.1. Here the probabilities 𝑝𝑖 = 𝑃(𝑥𝑖) are depicted
by squares the size of which corresponds to the value of 𝑝𝑖. If we define 𝒱 to be vowels
from Figure 1.1, i.e., 𝒱 = {a, e, i,o,u}, then

𝑃(𝒱) = 𝑃(a) + 𝑃(e) + 𝑃(i) + 𝑃(i) + 𝑃(o) + 𝑃(u)
= 0.058 + 0.091 + 0.060 + 0.069 + 0.033 = 0.311. (1.5)

(The probability values are taken from MacKay (2003:p. 22)) □

§1 Probability theory 9

𝑖 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
𝑥𝑖 a b c d e f g h i j k l m n o p q r s t u v w x y z −
𝑝𝑖

Figure 1.1. Probability distribution over the letters in an English document. The size of
a square refers to the probability 𝑝𝑖 = 𝑃(𝑥𝑖). Modified from MacKay (2003:p. 22)

Given two random variables 𝑋 and 𝑌 , each outcome is an ordered pair (𝑥, 𝑦) with
𝑥 ∈ 𝒳 = {𝑥1, . . . , 𝑥𝑁} and 𝑦 ∈ 𝒴 = {𝑦1, . . . , 𝑦𝑀}. We call 𝑃(𝑥, 𝑦) the joint probabilityjoint probability

𝑃 (𝑥, 𝑦) of the outcomes of 𝑋 and 𝑌 . The comma and the brackets here are optional when writing
such ordered pairs, that is 𝑥𝑦⇔ (𝑥, 𝑦). Note that the two random variables 𝑋 and 𝑌 need
not be independent.

Example 1.3. An example of a joint probability is the ordered pair 𝑥𝑦 consisting of
two successive letters (“bigrams”) in an English document.3 The possible outcomes are
ordered pairs of letters such as aa, ab, ac, . . . , zz. Of these, we might expect ab and ac

Figure 1.2. The joint probability distribution over the 27 × 27 possible bigrams 𝑥𝑦 in an
English document. The size of the square (𝑖, 𝑗) refers to the probability 𝑝𝑖 𝑗 = 𝑃(𝑥𝑖, 𝑦 𝑗).
Modified from MacKay (2003:p. 23)

to be more probably than aa and zz. An estimate of two neighboring letters is shown
graphically in Figure 1.2. □

Given a joint probability 𝑃(𝑥, 𝑦) for sample spaces with finitely many values, we can
obtain the marginal probability 𝑃(𝑥) from it by summation over all values of 𝑦: marginal prob-

ability

𝑃(𝑥) =
∑︁
𝑦∈𝒴

𝑃(𝑥, 𝑦) (1.6)

Accordingly, the marginal probability 𝑃(𝑦) is achieved by summation over all values of 𝑥:

𝑃(𝑦) =
∑︁
𝑥∈𝒳

𝑃(𝑥, 𝑦) (1.7)

3MacKay (2003):p. 23.

10 Andreas de Vries: Machine Learning

Given a joint probability 𝑃(𝑥, 𝑦), the conditional probability 𝑃(𝑥 | 𝑦) is defined by theconditional
probability
𝑃 (𝑥 | 𝑦) quotient of the joint probability 𝑃(𝑥, 𝑦) and the marginal probability 𝑃(𝑦),

𝑃(𝑥 | 𝑦) = 𝑃(𝑥, 𝑦)
𝑃(𝑦) (1.8)

We pronounce 𝑃(𝑥 | 𝑦) “the probability that 𝑋 equals 𝑥, given 𝑌 equals 𝑦”, or even shorter
“the probability of 𝑥, given 𝑦”.

The marginal probability 𝑃(𝑥) is often also called the prior probability of 𝑥, and theprior/posterior
probability conditional probability 𝑃(𝑥 | 𝑦) the posterior probability of 𝑥, given the data 𝑦.4

Example 1.4. (Example 1.3 revisited) From the joint probability distribution 𝑃(𝑥, 𝑦)
in Example 1.3 and the probability distribution 𝑃(𝑥) in Example 1.2, the conditional
probability distribution 𝑃(𝑥 | 𝑦) can be determined. It is depicted in Figure 1.3 (a). For

(a) 𝑃(𝑥 | 𝑦) (b) 𝑃(𝑦 | 𝑥)
Figure 1.3. The conditional probability distributions (a) 𝑃(𝑥 | 𝑦) and (b) 𝑃(𝑦 | 𝑥) over the
27 × 27 possible bigrams 𝑥𝑦 in an English document. The size of the square (𝑖, 𝑗) refers
to the probability (a) 𝑝𝑖 𝑗 = 𝑃(𝑥𝑖 | 𝑦 𝑗) or (b) 𝑝𝑖 𝑗 = 𝑃(𝑦𝑖 | 𝑥 𝑗), rsp. Modified from MacKay
(2003:p. 24)

instance, 𝑃(𝑥 | 𝑦 = u) is the probability of the first letter 𝑥, given that the second letter is a
u. As we can see in Figure 1.3 (a), the most probable values for 𝑥 given 𝑦 = u are o and n.

Analogously, the probability 𝑃(𝑦 | 𝑥 = q) is the probability of the second letter 𝑦, given
that the first letter is a q. As we can see in Figure 1.3 (b), the most probable values for 𝑦
given 𝑥 = q are u and –. □

1.2 Bayes’ Theorem
The Bayes theorem is a direct mathematical consequence of the definition of the conditional
probability.

Satz 1.5 (Bayes 1763). Let be 𝑃(𝑦 | 𝒙) be the conditional probability to observe the value
𝑦, having observed the values 𝒙 = (𝑥1, . . . , 𝑥𝑛), 𝑃(𝒙 | 𝑦) the conditional probability to

4MacKay (2003):p. 6; Wermuth and Streit (2007):p. 137.

§1 Probability theory 11

observe 𝒙, given the value 𝑦, as well as 𝑃(𝒙) and 𝑃(𝑦) the prior probabilities to observe
the values 𝒙 and 𝑦, respectively. Then

𝑃(𝑦 | 𝒙) = 𝑃(𝑦) 𝑃(𝒙 | 𝑦)
𝑃(𝒙) (1.9)

Proof. By (1.8) we have

𝑃(𝒙, 𝑦) = 𝑃(𝑦)𝑃(𝒙 | 𝑦) and 𝑃(𝒙, 𝑦) = 𝑃(𝒙)𝑃(𝑦 | 𝒙), (1.10)

i.e., 𝑃(𝑦)𝑃(𝒙 | 𝑦) = 𝑃(𝒙)𝑃(𝑦 | 𝒙). □

Figure 1.4 depicts the situation and illustrates the proof above: For instance, the leftmost
branch in the first probability tree must equal the leftmost branch in the second one.

•

H1 · · · H<

x1 · · · x: x1 · · · x:

% (H1) % (H<)

% (x1 |H1) % (x: |H1) % (x1 |H<) % (x: |H<)

Bayes’ theorem •

x1 · · · x:

H1 · · · H< H1 · · · H<

% (x1) % (x:)

% (H1 |x1) % (H< |x1) % (H1 |x:) % (H< |x:)

Figure 1.4. Effect of Bayes’ theorem: Change of the information situation 𝑃(𝑦 | 𝒙) ↔
𝑃(𝒙 | 𝑦) for 𝑚 possible outcomes of 𝑦 and 𝑘 possible outcomes of 𝒙.

On the surface, Bayes’ theorem does not seem very useful. It allows us to compute
the single probability 𝑃(𝑦 | 𝑥) in terms of three other probabilities 𝑃(𝑥 | 𝑦), 𝑃(𝑥), and
𝑃(𝑦). So what? Even worse, this seems like computing two steps backwards. But Bayes’
theorem is useful in practice because there are many cases where we have good estimates
for the three probabilities and need to compute the fourth one. Often, e.g., we observe as cause and ef-

fectevidence the effect of some unknown cause, and we would like to determine that cause in
turn. In this case, Bayes’ theorem becomes

𝑃(cause | effect) = 𝑃(effect | cause)𝑃(cause)
𝑃(effect) . (1.11)

The conditional probability 𝑃(effect | cause) quantifies the relationship in the causal di-
rection, whereas 𝑃(cause | effect) describes the diagnostic direction, i.e., the direction of
observation or measurement. In a task such as medical diagnosis, we usually have condi-
tional probabilities in causal relationships. The doctor knows 𝑃(symptoms | disease), but
both doctor and patient want a diagnosis 𝑃(disease | symptoms).5
Example 1.6 (Patient’s view of a diagnosis). Let 𝑃(𝑆) be the prior probability to have
a given desease; 𝑃(𝐷 | 𝑆) the conditional probability for a positive diagnosis, given the
patient has the desease; and 𝑃(𝑆 | 𝐷) the conditional probability to have the desease, given
a positive diagnosis.

•

𝑆 𝑆

𝐷 𝐷̄ 𝐷 𝐷̄

𝑃(𝑆 | 𝐷) = 𝑃(𝑆) 𝑃(𝐷 | 𝑆)
𝑃(𝐷)

=
0,999 · 0,02

0,999 · 0,02 + 0,001 · 0,98

=
0,01998
0,02096

= 0,95324

0,001 0,999

0,98 0,02 0,02 0,98
(1.12)

5Russell and Norvig (2022):p. 417.

12 Andreas de Vries: Machine Learning

Analogously Bayes’ theorem implies

Description Designation Probability
healthy despite a positive diagnosis 𝑃(𝑆 | 𝐷) 0,95324
sick, given a positive diagnosis 𝑃(𝑆 | 𝐷) 0,04676
sick despite a negative diagnosis 𝑃(𝑆 | 𝐷̄) 0,00002
healthy, given a negative diagnosis 𝑃(𝑆 | 𝐷̄) 0,99998

(1.13)

A positive diagnosis is wrong with 95,3 %! (However, a negative diagnosis is correct
at 99,998 % ...) The cause of this unexpected result is the low incidence of disease
(“prevalence”) 1 ‰. □

Definition 1.7 (Likelihood function). Bayes theorem is often interpreted as a statement
about how observed data 𝑿 affect the probability of a statistical model specified by
parameters 𝜽:

𝑃(𝜽 | 𝑿) = 𝑃(𝜽) 𝑃(𝑿 | 𝜽)
𝑃(𝑿) (1.14)

Here 𝑃(𝜽) is the prior probability that the model parameters are true, and 𝑃(𝜽 | 𝑿) its
posterior probability given the observations 𝑿. However, 𝑃(𝑿 | 𝜽) can also be viewed as alikelihood of pa-

rameters function of both the data 𝑿 and the parameters 𝜽 . For fixed parameters 𝜽 it is a probability
over 𝑿, but for fixed data 𝑿 it defines the likelihood of the parameters 𝜽 given the oberved
data 𝑿. The likelihood is denoted by 𝐿,6

𝐿 (𝜽 | 𝑿) = 𝑃(𝜽 | 𝑿). (1.15)

In the sequel we will usually be interested in the maximum likelihood 𝐿∗ for a fixed
statistical model and given data 𝑿, with 𝐿∗ = 𝐿 (𝜽∗ | 𝑿).

In principle, Bayes’s theorem describes how the probability of a hypothesis gets
updated over time, observing new data. In practice, however, the marginal probability
𝑃(𝑿), expressing the probability to observe 𝑿 under all circumstances is hard to estimate.
But we will see below (Section 2.4) that it is not necessary to know if we want to compare
the posterior probabilities for different model hypotheses, given the observations 𝑿.7

1.3 * Conditional independence
Two random variables are called (unconditionally) independent if

𝑃(𝑥, 𝑦) = 𝑃(𝑥) 𝑃(𝑦). (1.16)

In real-world contexts, observed quantities are very unlikely to be independent. In fact, if
it happens, the initial definition of the object is not relevant and it makes more sense to
construct two separate models. A phenomenon more common in reality is the conditional
independence.8

Definition 1.8. (Conditional independence) Let 𝑋 , 𝑌 , 𝑍 be random variables with out-
comes 𝑥, 𝑦, 𝑧. Then 𝑋 and 𝑌 are called conditionally independent given 𝑍 if and only if
𝑃(𝑧) > 0 and

𝑃(𝑥 | 𝑦, 𝑧) = 𝑃(𝑥 | 𝑧). (1.17)
Sometimes this property is written (𝑋 ⊥ 𝑌 | 𝑍)

6cf. Hastie et al. (2009):p. 265; for a short description see also James et al. (2013):p. 133.
7Downey (2011):p. 75.
8Pourret et al. (2008):p. 9; Wermuth and Streit (2007):p. 152.

§1 Probability theory 13

Lemma 1.9. Let 𝑋 , 𝑌 , 𝑍 be random variables with outcomes 𝑥, 𝑦, 𝑧. Then 𝑋 and 𝑌 are
conditionally independent given 𝑍 if and only if

𝑃(𝑥, 𝑦 | 𝑧) = 𝑃(𝑥 | 𝑧) 𝑃(𝑦 | 𝑧). (1.18)

Here 𝑃(𝑥, 𝑦 | 𝑧) is the joint probability of 𝑋 and 𝑌 given 𝑍 . This alternate formulation
states that 𝑋 and 𝑌 are independent random variable, given 𝑍 .

Proof. Starting with equation (1.18) we have the following equivalency conversions

𝑃(𝑥, 𝑦 | 𝑧) = 𝑃(𝑥 | 𝑧) 𝑃(𝑦 | 𝑧) (1.8)⇐⇒ 𝑃(𝑥, 𝑦, 𝑧)
𝑃(𝑧) =

𝑃(𝑥, 𝑧)
𝑃(𝑧)

𝑃(𝑦, 𝑧)
𝑃(𝑧)

⇐⇒ 𝑃(𝑥, 𝑦, 𝑧) = 𝑃(𝑥, 𝑧)𝑃(𝑦, 𝑧)
𝑃(𝑧)

⇐⇒ 𝑃(𝑥, 𝑦, 𝑧)
𝑃(𝑦, 𝑧) =

𝑃(𝑥, 𝑧)
𝑃(𝑧)

(1.8)⇐⇒ 𝑃(𝑥 | 𝑦, 𝑧) = 𝑃(𝑥 | 𝑧),

applying the definition (1.8) twice. The last equation exactly is the definition (1.17) and
thus it is equivalent to equation (1.18). □

Let us now depict the conditional dependence between two random variables by an
arrow which expresses the influence or causal relation. If two random variables are Bayesian

networkconditionally independent, they are not connected by an arrow. This way there are only
two possibilities to express a conditional independence of two random variables 𝑋 and
𝑌 given 𝑍 , as is depicted in Figure 1.5. Conditional independence therefore is induced

𝑌 𝑍 𝑋

𝑋

𝑍

𝑌

Figure 1.5. The two basic relations expressing the conditional independence of two
random variables 𝑋 and 𝑌 given 𝑍 .

either by intermediate random variables (“interrupting” a direct relation), or by a random
variable influencing several other random variables. For multiple random variables this
procedure forms a directed graph (“digraph”) called Bayesian network.

Example 1.10. (The lorry driver)9 A lorry driver is due to make a 600 mile triTo analyze
the risk that 𝑋: “he will fall asleep while driving”, let us consider whether𝑌 : “he slept well
in the night before” (i.e., more than seven hours), and 𝑍: “he feels tired at the beginning of
the trip”. Obviously, there are causal relationships between the driver’s sleep, his perceived
fatigue, and the risk of falling asleeTherefore, the three (binary) random variables cannot
be independent. Now let us suppose that we know that the lorry driver feels tired at the
beginning of the triThen knowing whether this is because of a bad sleep the night before, or
to any other reason, does not matter to evaluate the risk. Similarly, if the lorry driver does
not feel tired at tge beginning of the trip, the quality of his sleep may be considered to have

9Pourret et al. (2008):p. 9.

14 Andreas de Vries: Machine Learning

𝑌 : slept well 𝑍: feels tired 𝑋: will fall asleep

Figure 1.6. The influences of the three random variables in Example 1.10. Variable 𝑋 is
conditionally independent of 𝑌 given 𝑍 .

no influence on the risk. Thus the risk of falling asleep (𝑋) is conditionally independent
of the quality of sleep (𝑌), given the lorry driver’s fatigue (𝑍). In terms of probabilities of
the respective outcomes 𝑥, 𝑦, 𝑧 we therefore have

𝑃(𝑥 | 𝑦, 𝑧) = 𝑃(𝑥 | 𝑧). (1.19)

So knowing the values of 𝑦 and 𝑧 is not better than knowing the only the value of 𝑧. It
is useless to describe the behavior of 𝑋 , 𝑌 , 𝑍 by a function of three variables, instead we
may deduce from (1.19) that

𝑃(𝑥, 𝑦, 𝑧) = 𝑃(𝑦) 𝑃(𝑧 | 𝑦) 𝑃(𝑥 | 𝑧) (1.20)

Thus the risk model can be constructed by successively studying the quality of sleep, then
its influence on the state of tiredness, and then the influence of the tiredness on the risk of
falling asleep (Figure 1.6). □

Example 1.11. (The doped athlete)10 During a sports competition, each athlete undergoes
two doping tests, aimed to detect if she or he has taken a given prohibited substance: a
blood test and a urine test. Both tests are carried out in two different laboratories, without
any form of consultation.

Obviously, the two tests are not independent. If the blood test is positive, then the
athlete is likely to be doped and thus the urine test will probably be positive, too. But in

𝑋: blood test positive

𝑍: athlete is doped

𝑌 : urine test positive

Figure 1.7. The influences of the three random variables in Example 1.11. Variable 𝑋 is
conditionally independent of 𝑌 given 𝑍 .

case the athlete is doped, both tests can be viewed as independent since they use different
methods. The same holds true if the athlete is not doped: Therefore the two tests are
conditionally independent, given the status of the athlete. Formally, if 𝑧 is the outcome of
the binary random variable 𝑍 whether the athlete is doped or not, 𝑥 is the outcome of the
blood test, and 𝑦 the result of the urine test, we can write

𝑃(𝑥 | 𝑦, 𝑧) = 𝑃(𝑥 | 𝑧), and symmetrically 𝑃(𝑦 | 𝑥, 𝑧) = 𝑃(𝑦 | 𝑧) (1.21)

Both equations tell us that knowing whether the athlete has taken the substance is enough
information to the chances of either test being positive, cf. Figure 1.7. It is useless to

10Pourret et al. (2008):p. 10.

§1 Probability theory 15

describe the behavior of 𝑋 , 𝑌 , 𝑍 by a function of three variables. Instead, the equations
(1.21) yield:

𝑃(𝑥, 𝑦, 𝑧) = 𝑃(𝑧) 𝑃(𝑥 | 𝑧) 𝑃(𝑦 | 𝑧). (1.22)

This means that considerations on the proportion of doped athletes 𝑃(𝑧) and on the
reliabilities 𝑃(𝑥 | 𝑧), 𝑃(𝑦 | 𝑧) of each test are sufficient to construct a model. □

1.4 Problems
Problem 1.1 (Random variables). (a) We introduced the notion of a random variable
somewhat sloppily on page 7 above. What is the correct formal definition of a random
variable 𝑋 if we designate the sample space by Ω?

□ 𝑋 : Ω → Ω

□ 𝑋 : Ω → R
□ 𝑋 : R→ Ω

□ R : 𝑋 → R

(b) Let Ω = {1, 2, 3, 4, 5, 6} be the sample space of a die roll. What is the table of
values of the random variable 𝑋 , yielding the value 1 if an even number of pips is rolled,
and 0 otherwise?

Number of pips 𝜔 1 2 3 4 5 6
𝑋 (𝜔)

What is the probability 𝑃(𝑋 = 1) that the random variable takes on the value 1? What is
the implicit assumption made to compute this probability?

2
Models and theories

Overview
2.1 Methods of logical inference . 17
2.2 Theories . 18
2.3 What exactly is a model? . 21
2.4 Occam’s razor and model selection . 25
2.5 Problems . 28

Erst die Theorie entscheidet, was beobachtet werden kann. (It is the theory
which decides what can be observed.)

Einstein to Heisenberg (Source: von Weizsäcker, 1985:p. 331)

A basic concept in machine learning and data analysis is the notion of the model. The
choice of a model decides how the observed data can be analysed and interpreted. The
term “model” in the senses we employ it today only emerged in the 16th or 17th century1

and was used in science primarily since the formation of quantum theory in the first
decades of the 20th century. The severe difficulties to understand the quantum phenomena
changed the view on what until then had been designated as a “theory”, by relativizing
the categorical claim of a theory to represent the truth. Especially, various atomic models
formed over time, each one restricted to a specific scope, i.e., to a confined section of the
reality which could be explained by it. This approach was so successful that even today
we use Bohr’s model to understand the spectral lines of the hydrogen atom, and the orbital
model to explain more complex atoms and molecules.

The aim of this chapter is to clarify the interrelations between the notions of theory and
model from a modern point of view, and to correlate it to observations of phenomena of
the real world and to the making of hypotheses. All these notions and their interrelations
base upon the methods of logical inference. We will start with a short overview of these
methods, proceed then with the definitions of theories and models. The chapter ends
introducing Occam’s razor, a principle to select an optimal model from a collection of
several models for a given problem.

1from Latin modulus – “measure, manner”, https://en.wiktionary.org/wiki/model, https://de.

wiktionary.org/wiki/Modell

16

https://en.wiktionary.org/wiki/model
https://de.wiktionary.org/wiki/Modell
https://de.wiktionary.org/wiki/Modell

§2 Models and theories 17

2.1 Methods of logical inference
There are different forms of logical inference. In ancient Greece, Aristotle distinguished
two forms, deduction and induction. However, since the works of the logician and
philosopher Charles Sanders Peirce in the beginning of the 20th century, induction is
confined from a third form, abduction.2 Nowadays, however, the term is used in philosophy
of science slightly different than Peirce originally defined it.

Deduction is the reasoning from one or more statements, the premises, to reach a
logical conclusion. Thus deductive reasoning links premises with conclusions: If all deduction

premises are true, the terms are clear, and the rules of deductive logic are followed, then
the conclusion reached is necessarily true.

Deduction contrasts with induction. Inductive reasoning is a method of reasoning in
which the premises are viewed as supplying some evidence of the truth of the conclusion,
but not full assurance. It is also described as a method where experiences and observations, induction

including what is learned from others, are synthesized to come up with a general rule. In

Deduction Induction Abduction
Rule: 𝐴⇒ 𝐵
Premise: 𝐴
Conclusion: 𝐵

Premise: 𝐴
Conclusion: 𝐵
Rule: 𝐴⇒ 𝐵

Rule: 𝐴⇒ 𝐵
Conclusion: 𝐵
Hypothesis 𝐻1: 𝐴1

...
...

Hypothesis 𝐻𝑛: 𝐴𝑛
Best Premise 𝐻∗: 𝐴

Table 2.1. Principles of deduction, induction, and abduction.

deductive reasoning, a conclusion is reached by the reduction of general rules, narrowing
the range under consideration until only the conclusion remains. In deductive reasoning
there is no uncertainty. In inductive reasoning, the conclusion is reached by generalizing
or extrapolating from specific cases to general rules resulting in a conclusion that has
epistemic uncertainty.

There is a third form of logical inference, the “abduction.” Abduction is a method of
reasoning to find hypotheses from observations and select the simplest and most likely one
of them. A hypothesis is an unproved but plausible assumption or a proposed explanation
for a phenomenon. It often serves as a working hypothesis that is provisionally accepted hypothesis

as a basis for further research. A scientific hypothesis especially requires to be testable
by observations or experiments, i.e., verifiable or falsifiable. Abductive reasoning can abduction

thus be understood as the inference to the best explanation of an observed phenomenon.
Unlike deductive reasoning, abductive conclusions have a remnant of uncertainty or doubt.
During the 20th century abduction was widely ignored, but with growing computing power
it was rediscovered in the fields of law, computer science, and artificial intelligence research
since the 1990s.3

The relationships between deduction and abduction as methods of inference are as
follows. Both start from the rule, but suppose either the result or the premise. Deduction

2Strictly speaking, the idea of abduction goes back to Aristotle, too, who mentions it by the term
apagoge (Priori Analytics, II. 25, 69a, https://logicalstudy.ihcs.ac.ir/article_5171.html). It also
already contrasts with induction. The translation of the term apagoge with abduction was first done in 1597
by the Italian legal scholar Julius Pacius. Peirce thus only revisited the term, but defined it more precisely
and thus made it useable as a scientific method for the philosophy of science and for computer science.

3Flach and Kakas (2000).

https://logicalstudy.ihcs.ac.ir/article_5171.html

18 Andreas de Vries: Machine Learning

concludes the result, whereas abduction selects the best hypothesis as premise. Moreover,
induction and abuction coincide supposing the conclusion, but alternate the roles of rules
and premise as the result of inference.

Example 2.1. The following example is modified from one that Peirce published in 1902.4
Here the notions of Table 2.1 are assigned by the following statements:

Rule 𝐴⇒ 𝐵: “All the beans from this bag are white.”
Premise 𝐴: “These beans are from this bag.”
Conclusion 𝐵: “These beans are white.”

For the abduction we formally have the two hypotheses𝐻1: 𝐴 and 𝑀2: ¬𝐴, from which we
choose the most probable one. Note that both the inductive and the abductive inferences

Deduction Induction Abduction
All the beans from this bag are white
These beans are from this bag
These beans are white.

These beans are from this bag
These beans are white
All the beans from this bag are white

All the beans from this bag are white
These beans are white
𝐻1: The beans are from this bag
𝑀2: The beans are not from this bag
𝐻1: The beans are from this bag

Table 2.2. Examples of deduction, induction, and abduction.

may be wrong. Only the deduction is always logically correct. □

2.2 Theories
Wie ist Theorie möglich? Sie folgt niemals mit logischer Notwendigkeit aus
der Erfahrung. Aus Gesetzen, die sich in der Vergangenheit bewährt haben,
folgt nicht mit logischer Notwendigkeit, was in Zukunft geschehen wird.
(How is theory possible? It never follows with logical necessity from experi-
ence. From laws that have proved themselves in the past, it does not follow
with logical necessity what will happen in the future. [Translated by the
author])

Carl Friedrich von Weizsäcker (1985:p. 24)

A theory is a finding about a phenomenon of reality, obtained by contemplative and
rational thinking.5 Here reality means a consistent world outside of and independent
from the observer.6 In modern science, a theory is an explanation of nature, of aspects of
the natural world, or of real world phenomena; it can be verified in accordance with the
scientific method, using commonly accepted protocols of observation, measurement, and
evaluation of results.7 A theory can produce particular models for real world phenomena.

Example 2.2. (Quantum Theory) One of the most spectacular examples of a theory
with controversial relationship to reality is quantum theory. Its object is to explain the
dynamics of elementary particles and atoms, i.e., the microscopic world. It can be

4https://books.google.com/books?id=E7fnCAAAQBAJ&pg=PA13&redir_esc=y#v=onepage&q&f=false

5In ancient Greek, 𝜃𝜀𝜔𝜌𝜄𝛼 (theoria – “looking at”, “viewing”, “beholding”) meant the contemplation
of truth through pure thought or speculative understandings of natural things, independent of its realization.

6cf. Zeh (2012):p. 50.
7For more details cf. https://plato.stanford.edu/archives/sum2021/entries/scientific-method/

https://books.google.com/books?id=E7fnCAAAQBAJ&pg=PA13&redir_esc=y#v=onepage&q&f=false
https://plato.stanford.edu/archives/sum2021/entries/scientific-method/

§2 Models and theories 19

formulated by Dirac’s fundamental superposition principle in an abstract Hilbert space,
where the Schrödinger equation describes the dynamics of the Hilbert space vectors
representing quantum states.8 The application of the theory to local particles, however,
leads to fundamental paradoxes, the most famous of which is the Einstein-Podolsky-Rosen
(EPR) paradox.9 It can only be resolved by abandoning at least one the three concepts
locality, reality, or free will:10

• No locality: Locality is the physical principle that interactions cannot propagate
faster than light. According to general relativity, locality is necessary for causality,
implying that a cause always lies in the past of its effect. However, one resolution
of the EPR-paradox is to assume that particle interactions are propagated instanta-
neously, i.e., faster than light.

• No reality: Reality means a consistent world outside of and independent from the
observer. One resolution of the EPR-paradox, however, is to assume that microscopic
particles do not have properties which can be measured independently from the
observer. This is the viewpoint of the model called “Copenhagen interpretation”
initiated by Bohr and Heisenberg in the 1920’s.

• No free will: An observer cannot configure a measurement apparatus independently
from the objects to be observed. Any experiment is correlated to an unknown cause
in the past or by some mysterious “conspiracy” to the quantum states of the objects.

Each of these options have severe impact on the fundamental validity of physical theories in
general. What is wrong? A way out of this dilemma is to question the underlying concept
of particles: There is no paradox at all, if the superposition principle and the non-local
Schrödinger wave function are accepted as real, instead of particles.11 By this model, or
“interpretation”, particles are realizations through measurements of the non-local quantum
field 𝜓, similarly to the (widely accepted) model that electrons are realizations of the
electromagnetic field.12 Born was the first to interpret the complex-valued wave function
𝜓 as a “probability wave” such that the probability 𝑃(𝑥, 𝑡) to measure a quantum particle
at point 𝑥 at time 𝑡 is given by its modulus square:13

𝑃(𝑥, 𝑡) = |𝜓(𝑥, 𝑡) |2. (2.1)

In this model, the momentum 𝑝 is given by the term iℏ 𝜕
𝜕𝑥𝜓(𝑥, 𝑡), such that Heisenberg’s

uncertainty relation Δ𝑥Δ𝑝 ≧ ℏ is a purely mathematical consequence of the Fourier
theorem. These ideas especially go back to de Broglie, Schrödinger, Born, Bohm, Everett,

8Zeh (2012):p. 52.
9Zeh (2012):p. 15.
10Zeh (2012):p. 16.
11“I think that it has to be the wavefunction [...] that describes quantum reality.” (Penrose, 2004:p. 508).

“We have to think of the entire wave as describing (or ‘being’) just a single particle. [...] We must think of
a wavefunction as one entire thing. If it causes a spot at one place [by a measurement], then it has done its
job.” (Penrose, 2004:p. 512). “The reality of new physical concepts was often initially disputed. Galileo
was accused because he considered the Copernican system as real and not only as a calculation method.
[...] In the nineteenth century, the electrical field was also initially regarded as a purely formal auxiliary
construct for calculating forces on charges. Since we cannot ‘directly behold’ the field, the question is what
we mean by its reality. In the justification of a real electrical field, the consistent ‘cogitability’ of small
sample charges plays an essential role with the help of which it could be operationally proved everywhere,
without disturbing it noticeably.” (Translated from Zeh, 2012:pp. 48–49)

12Zeh (2012):p. 52.
13Goswami (1997):p. 13; Scheck (2013):p. 39.

20 Andreas de Vries: Machine Learning

and Zeh.14 However clear and consistent quantum theory might be, until to date there
is no generally accepted ontology for it. “It is a common view among many of today’s
physicists that quantum mechanics provides us with no picture of ‘reality’ at all!”15 The
case remains unsolved. □

I do not believe that we have yet found the true ‘road to reality’, despite the
extraordinary progress that has been made over two and one half millenia.

Roger Penrose in The Road to Reality Penrose (2004:p. 1027)

Paradigms and revolutions
According to Heisenberg (1948) a theory is called closed if it cannot be improved by
minor modifications. An new theory improving a closed theory radically differs from it in
certain fundamental notions, while preserving the scope of its successful parts. Thomas
Kuhn16 sees the evolution of such theories in science governed by changing paradigms.
Such changes of paradigms he calls “revolutions.”17

Example 2.3. (Copernican Revolution) A famous example of a revolution in scientific
thought is the Copernican Revolution. In Ptolemy’s school of thought, cycles and epicycles
(with some additional concepts) were used for modeling the movements of the planets in
a cosmos that had a stationary Earth at its center. As accuracy of celestial observations
increased, complexity of the Ptolemaic cyclical and epicyclical mechanisms had to increase
also to maintain the calculated planetary positions close enough to the observed positions.
Copernicus instead proposed a cosmology in which the Sun was at the center and the
Earth was one of the planets revolving around it. Both theories in fact are mathematically

(a)

Earth

planetary orbit

planet

deferent

epicycle

(b)

Figure 2.1. The epicycle theory and Copernicus cosmology. Modified from: Koyré
(1992:p. 53)

equivalent. But whereas the Ptolemaic model requires two radii per planet (the radius
of the deferent and the radius of the epicycle), the Copernican theory requires only one
radius per planet (the radius of its orbit). Hence the Copernican theory is more elegant.

Nonetheless, Copernicus’s theory was rejected at first. One severe objection was that
a motion of the Earth should be observable with respect to the “celestial sphere” the stars

14von Weizsäcker (1985):pp. 492–499; Zeh (2012):p. 60; cf. also Penrose (2004):p. 507.
15Penrose (2004):p. 782.
16Kuhn (1962).
17Cf. also von Weizsäcker (1985):p. 219.

§2 Models and theories 21

were assumed to be part of. But since such relative motions of the stars were not observed,
it was clear that they must be negligibly small, i.e., light years away – a distance considered
impossible at the time. Moreover, the Copernican circular orbits did not fit to the more
and more accurate observational data of the motions of the planets, an error which Kepler
could resolve first one and a half centuries later by assuming elliptical planetary orbits. It
was Newton at last who finalized the revolution with his theory of gravitation, unifying the
Copernican-Keplerian heliocentric cosmology with Galileo’s conjecture about the inertia,
breaking with the Aristotelian paradigm that masses always tend to come to rest.18 □

2.3 What exactly is a model?
The world around us is complex. To understand and handle it — in spite of our limitations
and biases — we use representations of reality, called models. In general, a model is an
informative representation of a system, or an object.19 Models can be broadly divided into
concrete models (e.g. prototypes in engineering, scale models such as architectural models models in ge-

neralor model railways) and abstract models (e.g. conceptual models, often in mathematical
or in diagrammatic forms). Conceptual models are central to philosophy of science, as
almost every scientific theory nowadays effectively embeds some kind of model of the
physical or human sphere.

Example 2.4. (Atomic models) In the history of the natural sciences there have been
emerged various models about the structure of matter. In ancient Greece the philosophers
Leucippus and Democritus theorized that the natural world consists of atoms – i.e.,
indivisible bodies – and the void.20 But whereas they considered their model to be a
theory that is real, the atomic models developed in the 20th century have a well-defined
scope to represent only limited aspects of reality. For instance the Bohr model, assuming
that electrons revolve on discrete stable orbits with angular momenta 𝑛ℏ, 𝑛 = 1, 2, . . . ,
around the central nucleus, can well explain the spectral lines of the hydrogen atom, but
it fails for more complex atoms. To explain the locations of several electrons around the
nucleus, the orbital model basing on the Schrödinger wave function may be used, but it
cannot be applied to compute molecular orbits. This in turn is the scope of the molecular
orbital model where electrons are not assigned to individual chemical bonds between
atoms, but are treated as moving under the influence of the atomic nuclei in the entire
molecule. □

Remark 2.5. Very important models in machine learning are statistical models. They
are special forms of mathematical models which consist of functional equations and
distinguish variables from model parameters. We will study them below in section 3.3. □

Remark 2.6. Although there are obvious differences in the meanings of a model and a
hypothesis, we will use both notions interchangeably in the sequel. The main reasons are
the following. Firstly, scientific hypotheses usually have the form of a mathematical model.

18My former colleague at Hagen University, Dieter Bangert, stated in a talk: “Aristotle said what daily
experience teaches us and gave a plausible explanation. Example ‘rolling ball’: A moving body has the
tendency to take up the state of rest. The movement therefore comes to a halt by itself; if it is to be
maintained, the constant action of a force is required. Example ‘falling body’: Heavy bodies fall faster
than light ones. Aristotle describes what he observes. He gives a plausible, but false, explanation.”
(http://haegar.fh-swf.de/spielwiese/ART/2_Bangert_Modelle-und-Wirklichkeit.pdf)

19The term originally denoted the plans of a building in late 16th-century English, and derived via French
and Italian ultimately from Latin modulus, a measure.

20https://plato.stanford.edu/entries/atomism-ancient/#LeucDemo

http://haegar.fh-swf.de/spielwiese/ART/2_Bangert_Modelle-und-Wirklichkeit.pdf
https://plato.stanford.edu/entries/atomism-ancient/#LeucDemo

22 Andreas de Vries: Machine Learning

Secondly, in machine learning the process of model selection consists of comparing several
statistical models, each being viewed as a different hypothesis explaining a given set of
data. Moreover, a hypothesis usually is made by abduction from observations, and so are
models in model selections. Therefore, a model always is a hypothesis, going to be tested
by observations. A hypothesis, in turn, is usually called a model only if it states a more or
less complex mathematical relationship of observable data. In contrast, simple statements
such as “This drug is safe for humans” are usually not called “models”. □

The complex relationships between reality, theory, models, and observations are de-
picted in Figure 2.2. We see that they mainly base on the methods of logical inference,

model observationtheory

real world
phenomenon

experiment, proof,
or simulation

reality

deduction
induction

abduction

reveals

explains or
represents

designstests

explains

explains
(essential
parts of)

measurements
or data

measurements
or data

verifies
or

falsifies

designs

Figure 2.2. A model as a representation of reality and its relationships to theory, models,
and observation.

namely deduction, induction and abduction. Especially, a deductive model is a logicaldeductive
and inductive
models structure based on a theory, and an inductive model arises from empirical findings and

generalization from them.

Mathematical models
Very important models in machine learning are statistical models. They are special forms
of mathematical models which consist of functional equations and distinguish variables
from model parameters.

Definition 2.7. A mathematical model is a representation of a system, i.e., a set of related
object of the real world, which is expressed by a functional equationmathematical

models

𝑦 = 𝑓 (𝑥, 𝜃) (2.2)

of some model variables 𝑦 and 𝑥, some model parameters 𝜃 and a function 𝑓 . Usually,
𝑦 ∈ R𝑙 , 𝑥 ∈ R𝑛, 𝜃 ∈ R𝑘 , and 𝑓 : R𝑛 × R𝑘 → R, for some given numbers 𝑛, 𝑘 , 𝑙 ∈ N.

Example 2.8. (Atomic models revisited) The atomic models in Example 2.4 all are mathe-
matical models, each having specific parameters and variables. For instance, the parameter
of the Bohr model is the Planck constant ℏ, and the variables are the principal quantum
number 𝑛 and the gainΔ𝐸 of energy from orbit 𝑛+1 to orbit 𝑛, determining as outcomes the

§2 Models and theories 23

angular momentum 𝐿 = 𝑛ℏ of the electron on the 𝑛-th shell and the frequency 𝜔 = Δ𝐸/ℏ
of the emitted photon. Formally, (2.2) then reads(

𝐿
𝜔

)
= 𝑓 (𝑛,Δ𝐸 ; ℏ) =

(
𝑛ℏ

Δ𝐸/ℏ
)
, (2.3)

i.e., 𝑥, 𝑦 ∈ R2, 𝜃 ∈ R and 𝑓 : R2 × R→ R2, with 𝑥 =
(𝑛
Δ𝐸

)
, 𝑦 =

(𝐿
𝜔

)
, and 𝜃 = ℏ. □

Example 2.9. (Climate models) Among the most complex mathematical models with
considerable social and economical impact are the climate models of the IPCC, an inter-
governmental body of the United Nations mandated to provide scientific information to
understand the human influence on the climate change on Earth.21 The climate change
is documented well and is caused mainly by steadily increasing emission of greenhouse
gases,22 see also Figure 7.1 on page 92. The economic losses due to the climate change
have increased during the last 50 years (Fig. 2.3). The climate models that the IPCC

Drought Extreme temperature Flood Landslide Storm Wildf re

Reported economic losses in US$ billion
Total = US$ 3.6 trillion

7%4%
3%

31%

1%

54%

1970-1979
0

200

400

600

800

1000

1200

1400

1990-19991980-1989 2000-2009 2010-2019

1381

942.0
852.3

289.3
175.4

Figure 2.3. Global economic losses due to disasters by decade. Source: WMO
(2021:p. 19)

reports use aim to represent the essential influences on the climate.23 The sixth asess-
ment report of the IPCC applies CMIP6, a system which couples various climate models,
so-called general circulation models (GCM) modeling the circulations of the oceans and
the atmosphere and basing on a system of physical equations.24 CMIP6 serves to com-
pute five possible socio-economic developments as scenarios. They are called shared
socio-economic pathways, numbered from SSP1 to SSP5 and extend the former scenarios
RPCs (representative concentration pathways) that describe a set of alternative trajecto-
ries for the atmospheric concentrations of key greenhouse gases.25 Each of these five SSP
scenarios represents an individual narrative. They are described as follows.

• SSP1: Sustainability. The world is looking less at economic growth and more at
global well-being and resource-efficient consumption. Investments in education and
health promote the demographic transition to a global population size that will soon
decline. Inequalities within as well as among nations are declining.

21The United Nations formally endorsed the creation of the IPCC (Intergovernmental Panel on Climate
Change) in 1988. It does not do own original research, but produces comprehensive assessment reports,
each of which builds on previous reports and highlights the current scientific knowledge. The working
group 1, especially, published its contribution to the sixth assessment on the physical science basis in 2021
(IPCC, 2021).

22e.g. Feldman et al. (2015); IPCC (2021):§1.2, §1.4.1.
23IPCC (2021):§1.5.3.
24cf. Schönwiese (2008):p. 245.
25O’Neill et al. (2017); Tollefson (2020); IPCC (2021):TS.1.3.1, §1.6.1.1; for the methodology, see e.g.

Rotmans et al. (2000).

24 Andreas de Vries: Machine Learning

21002080206020402020200019801960
0

2

3

4

5

1

Temperature increase (°C)

RCP8.5

SSP1-1.9

SSP1-2.6

observed
 data

RCPsSSP5SSP2 SSP3 SSP3SSP1

Figure 2.4. The five SSPs considered by IPCC (2021) and their respective predictions of
temperature increases until 2100. Sources: O’Neill et al. (2017) and Tollefson (2020)

• SSP2: Middle of the Road. Previous social, economic, and technological patterns
continue similarly into the future. Nations make unevenly distributed progress.
Continued environmental change occurs despite gradually less intensive use of raw
materials. Social and environmental vulnerabilities persist longer and are harder to
eliminate.

• SSP3: Regional Rivalry. Emerging nationalist tendencies make regional security is-
sues seem more important than global problems. The desire for local self-sufficiency
in energy and food inhibits interstate cooperation, developments are slower and more
costly, and protectionist measures impede trade and oppose common goals. In less
prosperous parts of the world, there is strong population growth and environmental
degradation.

• SSP4: Inequality. Economic and political power is increasingly distributed differ-
ently, both within and between states. A divide is emerging: on the one hand, a
well-connected, internationalized social class driving an economic and scientific
boom; on the other hand, globally fragmented milieus with poor education and
limited financial opportunities that hardly benefit from it. Social cohesion is dwin-
dling, and unrest is frequent. Environmental protection measures focus on the elite
environment.

• SSP5: Fossil-fueled Development. The world relies on innovation, shared economies,
and social participation to produce rapid advances that in turn enable sustainable
development. However, the processes are driven by intensive use of fossil energy
sources as well as energy-intensive lifestyles. The global economy is growing
rapidly. Local environmental problems such as air pollution can be managed, and
risks from severe climate change are also to be managed technologically.

These scenarios were developed in the year 2014, and since then scenario SSP3 seems
to be a storyline that is very close to the path that the major powers of the world are
taking. It is defined by a resurgence of nationalism. It sees concerns about economic
competitiveness and security lead to trade wars. As the decades progress, national efforts
to lock down energy and food supplies short-circuit global development. Investments in
education and technology decline. Curbing greenhouse gases would be difficult in such
a world, and adapting to climate change wouldn’t be any easier. Under this scenario, the
average global temperature is projected to soar to more than 4 °C above pre-industrial

§2 Models and theories 25

levels. The scenario seemed rather unlikely when it was developed. But unfortunately it
is not. □

Mathematical models can be divided into deterministic models and statistical models.
In a deterministic model, every variable states is uniquely determined by the parameters deterministic

vs. statistical
modelsin the model and possibly by previous states of these variables. Conversely, in a statistical

model randomness is present, i.e., variables are not described exactly and uniquely by
parameter values, but rather by some probability distributions.

2.4 Occam’s razor and model selection
A frequent problem in machine learning and in statistics is to select the best model
from several model candidates, explaining some observed data. But what is a “best”
model? Amazingly, an old philosophical principle gives us the guideline to formulate a
mathematically precise way of quantifying the goodness of a model. This principle we will
consider now. Let us start with a simple “model problem” from every-day life. Here we
generally do not speak of a “model,” but of a “hypothesis.” Therefore we will use the terms
interchangeably in this section. How many boxes are behind the pillar in Figure 2.5? The
usual spontaneous answer is: One! Is this guess rational? Or is it completely arbitrary?
MacKay (2003:Chapter 28) argues that this guess is grounded on the research principle

?

Figure 2.5. How many boxes are behind the pillar? One or two? Or even more? Source:
MacKay (2003:p. 343)

called Occam’s razor. It is the principle that states a preference for simple models and
hypotheses: “Accept the simplest explanation that fits to the observational data.” Thus
according to Occam’s razor, we should deduce that there is only one box behind the pillar.

Is there a convincing reason for believing that there is most likely one single box?
Perhaps your intuition used the argument “well, it would be a remarkable coincidence for
two boxes to be just the same height and color as each other”. To make machine learning
and artificial intelligence algorithms interpret that data correctly, we must translate this
intuitive feeling into a concrete mathematical formalism.26

26MacKay (2003):p. 343.

26 Andreas de Vries: Machine Learning

Besides the past empirical success of Occam’s razor – William of Occam lived about
700 years ago! – there are two reasons for its justification. The first one is aesthetic: “A
theory with mathematical beauty is more likely to be correct than an ugly one that fits
some experimental data,” as the great physicist Paul Dirac put it.27 The second reason is
probability: If we can estimate or even compute the probability of various possible models
to explain a phenomenon, then the model with the highest probability is to be accepted.
Indeed it is more probable that there is one box behind the tree than that there are two
ones. Let us examine this more closely in the following example.

Example 2.10. How many boxes are behind the pillar in Figure 2.5?28 Let us assume that
each box is either a thin cubiod or a cube standing on equipartitioned squares arranged by
a 7 × 2 grid. Two cuboids may share a single square. We assume moreover that there are
4 different colors of boxes, and that all properties of the boxes – form, position and color
– have uniform probabilities. Then the model 𝑀1 saying that there is only one box behind
the pillar has two free parameters, its position and its color. The position can attain one of
7 · 2 = 14 squares, and the color is one of four. The model 𝑀2 saying that there are two
boxes behind the pillar accordingly has four free parameters, for each box its square and
its color. What is the evidence of each model? Let us first state that the prior probabilities
𝑃(𝐻𝑖) of the hypotheses the are equal,

𝑃(𝑀1) = 𝑃(𝑀2) = 1
2
, (2.4)

since by assumption the a randomly chosen box is a cube with probability 1
2 . Then the

probability of observing the data 𝑋 that a green cube is behind the pillar given model 𝑀1
is given by

𝑃(𝑋 | 𝑀1) = 1
14

· 1
4
=

1
56
, (2.5)

since it is placed on the square behind the pillar with probability 1
14 , and it is green with

probability 1
4 . Analogously, for model 𝑀2 conjecturing that there are two cuboids behind

the pillar, the parameters of each single cuboid have the same probabilities as the cube for
model 𝑀1, but there are two different combinations of the two colors, i.e.,

𝑃(𝑋 | 𝑀2) =
(

1
14

· 1
4

)2
=

1
3136

, (2.6)

i.e., 𝑃(𝑋 | 𝑀2) = 𝑃2(𝑋 | 𝑀1). Then the probability 𝑃(𝑀𝑖 | 𝑋) of the validness of model 𝑖
is given by Bayes theorem, and thus the likelihood ratio of both models reads

𝑃(𝑀1 | 𝑋)
𝑃(𝑀2 | 𝑋) =

𝑃(𝑋 | 𝑀1) 𝑃(𝑀2)
𝑃(𝑋 | 𝑀2) 𝑃(𝑀1) =

𝑃(𝑋 | 𝑀1)
𝑃(𝑋 | 𝑀2) =

1
𝑃(𝑋 | 𝑀1) = 56. (2.7)

Therefore the probability of model 𝑀1 is much greater than that of model 𝑀2, given the
observational data 𝑋 . □

Definition 2.11. The ratio in Equation (2.7) we generally callprobability ratio

𝑃(𝑀1 | 𝑋)
𝑃(𝑀2 | 𝑋) =

𝑃(𝑋 | 𝑀1)
𝑃(𝑋 | 𝑀2) ·

𝑃(𝑀2)
𝑃(𝑀1) , (2.8)

27https://www.jstor.org/stable/24936146

28Modified from MacKay (2003):§28.2.

https://www.jstor.org/stable/24936146

§2 Models and theories 27

the probability ratio,29 given two models, or hypotheses, 𝑀1 and 𝑀2, and observational
data 𝑋 . If the probability ratio is greater than 1, model 𝑀1 is to be preferred, if it is smaller
than 1, model 𝑀2. The first ratio of the right-hand side of Equation (2.8),

BF (𝑋) = 𝑃(𝑋 | 𝑀1)
𝑃(𝑋 | 𝑀2) (2.9)

is called the Bayes factor.30

Remark 2.12. In model selection we will usually assume that the prior probabilities
𝑃(𝑀1) and 𝑃(𝑀2) are unknown, but equal. Then the probability ratio (2.8) yields

𝑃(𝑀1 | 𝑋)
𝑃(𝑀2 | 𝑋) =

𝑃(𝑋 | 𝑀1)
𝑃(𝑋 | 𝑀2) , (2.10)

i.e., the ratio of the probabilities of the models equals the ratio of their likelihoods, given
the data 𝑋 . □

Example 2.13. (The suspicion) One person left traces of his or her own blood at the scene
of a crime. A suspect, Oliver, is tested and found to have type 0 blood. Type 0 is a common
type in the local population, with frequency 60%. What is the evidence that Oliver was
present at the crime?

Solution: We have two hypotheses, 𝑀1: Oliver was present at the scene, 𝑀2: Oliver
was not present. The data are simply 𝑋: type 0 is found. Then we see immediately the
probabilities

𝑃(𝑋 | 𝑀1) = 1, 𝑃(𝑋 | 𝑀2) = 0.6, (2.11)
since given the hypothesis 𝑀1 that Oliver was present, type 0 is found with certainty, but
given hypothesis 𝑀2 that he was not, the probability is just as a random selection from the
population. Then Bayes’ theorem 1.5 implies

𝑃(𝑀1 | 𝑋) = 𝑃(𝑋 | 𝑀1) 𝑃(𝑀1)
𝑃(𝑋) =

𝑃(𝑀1)
𝑃(𝑋) , 𝑃(𝑀2 | 𝑋) = 𝑃(𝑋 | 𝑀2) 𝑃(𝑀2)

𝑃(𝑋) . (2.12)

Although we do not know the probability 𝑃(𝑋) to observe type 0 at the scene of the crime,
we can deduce the likelihood ratio (2.8) with 𝑃(𝑋 | 𝑀1) = 𝑃(𝑋 | 𝑀2) = 1

2 as

𝑃(𝑀1 | 𝑋)
𝑃(𝑀2 | 𝑋) =

𝑃(𝑋 | 𝑀1)
𝑃(𝑋 | 𝑀2) =

1
0, 6

= 1.667 > 1. (2.13)

Therefore hypothesis 𝑀1 is to be slightly preferred. Thus the data provide a weak evidence
that Oliver was present at the scene of the crime. □

Example 2.14. (The crime with 2 suspects)31 Two persons left traces of their own blood at
the scene of a crime. The blood groups of the two traces are O and AB. A supect, Oliver,
is tested and found to have type O blood. Type O is a common type in the local population,
with frequency 𝑝𝑂 = 60%, type AB is a rare type, with frequency 𝑝𝐴𝐵 = 1%. What is the
evidence that Oliver was present at the crime?

Solution: We have two hypotheses, 𝑀1: Oliver and one unknown person were present
at the scene, 𝑀2: two unknown people were present. The data are simply 𝑋: one type O
and one type AB were found. Then we see immediately the probabilities

𝑃(𝑋 | 𝑀1) = 𝑝𝐴𝐵 = 0.01, 𝑃(𝑋 | 𝑀2) = 2 𝑝𝑂 𝑝𝐴𝐵 = 0.012, (2.14)

29Brandt (1999):p. 186; MacKay (2003):pp. 28, 344; Hastie et al. (2009):p. 234.
30Hastie et al. (2009):p. 234.
31MacKay (2003):pp. 55–56.

28 Andreas de Vries: Machine Learning

since given the hypothesis 𝑀1 that Oliver was present, type O is found with certainty and
type AB by 𝑝𝐴𝐵, but given hypothesis 𝑀2 that he was not, the probability is just as a
random selection from the population for the first person to have type O and the second
one of type AB, as well as that for the first person to have type AB and the second one
type O. Then the likelihood ratio (2.8), with 𝑃(𝑋 | 𝑀1) = 𝑃(𝑋 | 𝑀2) = 1

2 , is given by

𝑃(𝑀1 | 𝑋)
𝑃(𝑀2 | 𝑋) =

𝑃(𝑋 | 𝑀1)
𝑃(𝑋 | 𝑀2) =

𝑝𝐴𝐵
2 𝑝𝑂 𝑝𝐴𝐵

=
1

2 𝑝𝑂
= 0.83 < 1. (2.15)

Therefore hypothesis 𝑀2 is to be slightly preferred. Thus the data in fact provide a weak
evidence against the suspicion that Oliver was present. □

Remark 2.15. (Relationships to statistic hypothesis testing) The procedure to apply Oc-
cam’s razor as described in this section is part of the so-called “Bayesian inference.” It
provides an alternative to the standard statistical hypothesis testing, or “null hypothesis
testing”. Here a so-called ”null hypothesis” 𝐻0 is tested against an alternative hypothesisnull hypothesis

𝐻1. The alternative hypothesis is the research hypothesis that is to be tested.32 It is thus
accepted when the null hypothesis is rejected. Thus, from the point of view of the research
hypothesis, there are two possible errors:

𝐻0 is true 𝐻1 is true

𝐻0 is accepted specifity (1 − 𝛼)
“true negative”

type 2 error (𝛽)
“false negative”

𝐻0 is rejected type 1 error (𝛼)
“false positive”

sensitivity (1 − 𝛽)
“true positive”

(2.16)

The goal of hypothesis testing is to calculate the probability to obtain a type 1 error, i.e.,
that 𝐻0 is rejected although it is true:

𝑝 = 𝑃(𝐻0 rejected | 𝐻0 valid) < 𝛼. (2.17)

This probability is the so-called “𝑝-value” and should be smaller than a given “significance
level” 𝛼 to reject the null hypothesis and to accept the alternative one. It should be very
small, usually 𝑝 < 0.05. Null hypothesis testing therefore is a reductio ad absurdumThe research

hypothesis
is accepted
only if the null
hypothesis is
rejected

argument, since the research hypothesis is assumed valid if its counterclaim is highly
implausible. The great disadvantage as compared to Occam’s razor is that we have no
idea how much better or worse the null hypothesis is. Moreover, Occam’s razor is much
more flexible to compare several optional alternatives and to select the most plausible. It
even yields a degree of belief given by the likelihood ratio.33 □

2.5 Problems
Problem 2.1 (Logical reasoning). Consider the three statements “It rains”, “The street
is wet”, “When it rains, the street is wet”. Formalize these statements by the variables
𝐴, 𝐵 and 𝐴 ⇒ 𝐵, and apply them to form a deduction, an induction, and an abduction
according to Table 2.1, as is done in Example 2.1.

32cf. Wermuth and Streit (2007):p. 192.
33for a critical comparison see, e.g., MacKay (2003):p. 458.

§2 Models and theories 29

Problem 2.2 (Model selection by probability ratio). There two types of bent coins, 𝐴
and 𝐵. A type 𝐴 coin shows head with probability 𝑝𝐴 = 1

3 , whereas a type 𝐵 coin shows
head with probability 𝑝𝐵 = 2

3 .
𝐴 𝐵

head 1/3 2/3
tail 2/3 1/3

(2.18)

Suppose we choose a coin at random and toss four tails and one head. Is it more likely to
be of type 𝐴 or 𝐵? Or in other words, does model 𝐴 or model 𝐵 fit better to the data 𝑋?

3
Theoretical foundations of machine

learning

Overview
3.1 What is machine learning? . 30
3.2 Statistical variables . 31
3.3 Statistical models . 33
3.4 Methods of machine learning . 35

3.4.1 Classification by scales of variables 37
3.4.2 Classification by type of learning . 37
3.4.3 Classification by level of structure recognition 38

3.5 Challenges of machine learning . 39
3.5.1 Problems of model choice: underfitting and overfitting 39
3.5.2 Data quality . 41

This chapter briefly explains the main terms that will be used in the sequel. Although they
mainly describe facts that might be familiar from basic courses of statistics or of machine
learning, they are also included here to introduce the notations used in these lecture notes.

3.1 What is machine learning?
The concept of machine learning provides a different perspective from which to view and
classify statistical analysis techniques. Machine learning is the technique of programming
computers so that they can learn from data without having explicitly implemented the
rules or patterns to be recognized.1 Machine learning is a subfield of computer science
and is closely related to the concepts of artificial intelligence, data science, and data
mining, see table 3.1. Data Science is an important subfield of Artificial Intelligence
and generally deals with the extraction of knowledge from data. Its main approaches are
machine learning and data mining. While data mining is mainly aimed at providing tools
to analyse data sets, machine learning focuses on the automated generation of knowledge,
i.e. the mechanization of learning: The recognition of rules or patterns should not be

1Géron (2017):§1.

30

§3 Theoretical foundations of machine learning 31

Artificial Intelligence (AI)
Data Science Intelligence research · · ·

Machine Learning Data Mining · · · · · ·
learn automatically from
data

detect patterns and regulari-
ties in data

· · · · · ·

neural nets, regression, cluster analysis, ... · · · · · ·
Table 3.1. Classification of fields of Artificial Intelligence

done by explicit programming instructions, but by learning processes based on training or
observation data. However, the line between machine learning and data mining is blurred.
Many of the methods of machine learning and data mining are the same, especially much of
the statistical techniques used. The two terms emerged almost simultaneously in 1990s.2

Example 3.1 (Spam filter). An instance of machine learning software is the spam filter
of your e-mail program. It permanently learns from training data you mark as “spam” or
“ham,” but it is not actively updatet. □

In the field of machine learning, there are three main types of learning, supervised
learning, unsupervised learning, and reinforcement learning.

Supervised learning: A prepared set of training data with the respective known solutions
(labels) is created, similar to the sample solutions of mock exams. The system uses this to
set the parameters of its (explicit or implicit) model. After this learning phase, the system
then labels a new data point (instance), whose solution it does not know, based on the set
parameters. That is, the “real” exam is written. An example of this is a spam filter that
labels each mail as “spam” or “ham”, as already explained in Example 3.1.

Unsupervised learning: The system tries to learn from training data without instruction.
This is similar to the situation of learning with mock exams without a sample solution.
After the learning phase, any new data point can be labeled, i.e., the “real” exam can be
written.

Reinforcement learning This is an iterative type of learning. The system (“agent”)
observes its environment, selects “actions” from a “policy” and executes them. Each
action is evaluated with a given reward function, i.e., it is rewarded or punished. The action
is considered or discarded according to the policy before the environment is observed again
in the next iteration step, and the cycle starts again with the modified policy. In exam
learning, this would correspond to the procedure of taking a “real” exam, adjusting the
learned topics (“policy”) depending on the exam result, and taking the next exam again.

3.2 Statistical variables
Statistical analyses are based on observed or measured data. For information processing,
they are represented as numbers. In principle, the property under consideration determines
how well its expression can be measured, i.e. how well it can be expressed in numbers. For
example, a person’s height can be expressed very easily by numbers, while his intelligence,
motivation or state of health are very difficult to measure.3

2Krahl et al. (1998); Mitchell (1997).
3Backhaus et al. (2016):p. 10.

32 Andreas de Vries: Machine Learning

The expressions of a measured trait are plotted on a specific scale. Depending on
how the property of an object can be expressed, different levels of measurement are
distinguished in statistics. There are two main categories categorical and the metric scale
of measures. Essential for the categorical scale is that their values need not be numbers
or, if they are numbers, then only as order numbers, not as computational quantities.

Scale of
measure

Feature Measurable
properties

Example Calculable quantity

ca
te

go
ri

ca
l nominal qualitat-

ive
frequency blood type, gender mode

ordinal sortable ranking educational attain-
ment, tournament
ranking

median, quantile

m
et

ri
c interval subtract-

able
distance date, temperature in

◦C
arithmetic mean, stan-
dard deviation

ratio dividable natural zero
point

age, price, percent,
temperature in Kelvin

geometric mean, vari-
ational coefficient

Table 3.2. Scales of statistical variables. Each scale contains the characteristics, measur-
able properties, and computable quantities of all scales above it.

In contrast, the values of metric scales can be added and subtracted, and statistical
quantities such as mean or standard deviation can be calculated. An overview of the
different scales of measures is given in table 3.2. There they are arranged such that
each scale contains the characteristics, measurable properties, and computable statistical
quantities of all preceding scales.

The lowest scale of measure is the nominal scale, whose values are purely qualitativenominal scale

and can only be tested for equality or inequality (𝑥 = 𝑦, 𝑥 ≠ 𝑦). Examples are scales for
blood groups (0, A+, A-, . . .) or for sex (m, w, d). The only statistically measurable
property that can be determined for nominal scaled data is the frequency of the individual
characteristic values, from which the mode index can be calculated as a statistical measure,
i.e. the most frequently occurring value of a sample. However, the values of a nominal
scale cannot be sorted meaningfully by size.

However, this is possible with the next higher scale of measure, the ordinal scale, mode
index, whose values express a ranking order. While they can be compared in terms of
magnitude (𝑥 < 𝑦), the distances between the rank values or the ordinal categories say
nothing about the distances between the characteristics of the objects on which they are
based. An example is the rank in the Premier Ligue – or Bundesliga, if you like – which
expresses the performance of one team compared to the others, but the first-place team
is hardly not better than the second-place team by the same amount as the second-place
team is better than the third-place team.

The next higher scale of measure is the interval scale. It has equal scale segmentsinterval scale

and thus belongs to the metric scale of measures. A typical example is the Celsius scale
for temperature measurement, where the distance between the freezing point and boiling
point of water is divided into a hundred equal sections. With interval-scaled data, even the
differences between individual measured values have informational content – e.g. large
or small temperature difference –. This is exactly not the case with nominal or ordinal
data. However, the zero point (freezing point, "Christ’s birth") is basically arbitrary in
an interval scale, since it depends on the unit used (Celsius versus Fahrenheit, Gregorian
versus Jewish or Islamic calendar).

§3 Theoretical foundations of machine learning 33

The highest scale of measure is represented by the ratio scale. It differs from the ratio scale

interval scale by the fact that additionally a natural zero point exists. It can be interpreted
for the characteristic concerned mostly in the sense of "not present". This is e.g. the
case with the Kelvin scale or the big bang as beginning of the time, not however with
the Celsius scale or the Gregorian calendar. This is also true for most physical quantities
(length, weight, velocity) or most economic characteristics (income, cost, price). In the
case of ratio-scaled data, not only the difference possess, but, due to the fixation of the zero
point, also the quotient or the ratio of the measured values have information content. Ratio
scaled data allow the application of all arithmetic operations as well as the application of
all statistical measures mentioned above. Additionally, e.g. the geometric mean or the
coefficient of variation can be calculated in a meaningful way.

In summary, the higher the scale of measure, the greater the information content. the
greater the information content of the data in question and the more computational more
arithmetic operations and statistical measures can be applied to the data. It is generally
possible to transform data from a higher scale of measure to a lower scale of measure, but
not vice versa. This can be useful to increase the clarity of the data or to simplify their
analysis. For example, income classes or price classes are often created that transform
originally ratio-scaled data down to an interval, ordinal, or nominal scale. Of course, a
transformation to a lower scale of measure is always associated with a loss of information.

Remark 3.2. Though the classification of scale of measures looks plausible, there are
borderline cases that cannot be assigned at first glance, at least not so easily. For example,
school grades ("very good", . . . , "insufficient") are nominally scaled, i.e., strictly speaking,
it does not make sense to compute an average grade; however, in most cases, the idea
implicit in the evaluation is that each grade covers an equal difference in performance and
that school grades are therefore interval-scaled. In this teaching brief, we will be dealing
with procedures that expect an entire network to be the independent variable. Since this
can be encoded as a matrix and matrices are not sortable, such procedures are only nominal
scaled. □

3.3 Statistical models
A statistical model assumes a priori a factually founded causal relation between the
variables. Thus, it presupposes a notion of which variables (“cause”) influence which other
variables (“effect”). Those variables that influence the others are called “independent”,
the influenced variables are called “dependent”.

Definition 3.3. If the data values of 𝑛 + 1 observable features 𝑥1, . . . , 𝑥𝑛, 𝑦 ∈ R, can
be measured with uncertainties or errors, then a statistical model with the 𝑘 parameters
𝜽 = (𝜃1, . . . , 𝜃𝑘) is a functional relationship

𝑦 = 𝑓 (𝒙, 𝜽) + 𝜀 (3.1)

with a function 𝑓 : R𝑛×R𝑘 → R and an error term 𝜀, such that the values of feature 𝑦 obey
a conditional probability 𝑃

(
𝑦 | 𝑓 (𝒙, 𝜽)) . The features 𝑥1, . . . , 𝑥𝑛 are called independent

variables of the model, the feature 𝑦 is called dependent variable, or target. Often, 𝒙 are
also called exogenuous variables or predictors, and 𝑦 endogenuous variables or response.

Remark 3.4. In machine learning the function 𝑓 usually is presupposed, e.g., by a theory
or a hypothesis, and the parameters 𝜽 are derived according to 𝑚 observed data of the

34 Andreas de Vries: Machine Learning

features

𝒚 =
©­­«
𝑦1
...
𝑦𝑚

ª®®¬ and 𝑿 =
©­­«
𝑿1
...

𝑿𝑚

ª®®¬ . (3.2)

Here each data set 𝑿𝑖 denotes a data vector of the 𝑛 features 𝑥1, . . . , 𝑥𝑛, such that 𝑿 in
fact is a matrix, i.e.,

𝑿 =
©­­«
𝑿1
...

𝑿𝑚

ª®®¬ =
©­­«
𝑥11 · · · 𝑥1𝑛
...

...
𝑥𝑚1 · · · 𝑥𝑚𝑛

ª®®¬ . (3.3)

The methods to determine the parameter values 𝜽 , given the data 𝒚 and 𝑿, vary depending
on the problem. Many methods involve the minimization of residues, i.e., of appropriate
distances of the observed data from the model values. Sometimes, Bayesian methods are
used to choose the parameters with the highest likelihood.4 □

Definition 3.5. A tuple (𝑦𝑖, 𝑿𝑖), with 𝑖 = 1, . . . , 𝑚, of related data values for the features
𝑦 and 𝒙 as given by Equation (3.2) is called a data point or an observation.

Example 3.6 (Linear regression: Height and age of children). Let be given the following
small sample for age and height of 𝑚 = 5 children.

Height x [cm] Age y [yrs]
107.9 5
149.8 12
115.5 6
85,5 2

138.4 10 80 90 100 110 120 130 140 150 160
0

2

4

6

8

10

12

14

Height

A
ge

Height 𝑥 and age 𝑦 seem to be correlated. A simple model could be:

𝑦 = 𝜃0 + 𝜃1𝑥 + 𝜀 (3.4)

with an error term 𝜀 ∼ WN(0, 𝜎2) and the parameters 𝜃 = (𝜃0, 𝜃1) ∈ R2 (Here: 𝜃0 =

−11.75, 𝜃1 = 0.157)5. □

Example 3.7 (Logistic regression). The following influences of learning times on passing
the exam have been observed:

Hours (x) Passed (y)
0.50 0
0.75 0
1.00 0
1.25 0
1.50 0
1.75 0
1.75 1

Hours (x) Passed (y)
2.00 0
2.25 1
2.50 0
2.75 1
3.00 0
3.25 1
3.50 0

Hours (x) Passed (y)
4.00 1
4.25 1
4.50 1
4.75 1
5.00 1
5.50 1

From this the following statistical model for 𝑦 as the probability to pass the exam having
learned 𝑥 hours can be applied:

4MacKay (2003):pp. 28, 347, 535; Hastie et al. (2009):pp. 30, 34, 233.
5K. P. Murphy (2012):p. 19f.

§3 Theoretical foundations of machine learning 35

1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

Model:
𝑦 = sigm (𝜃0 + 𝜃1𝑥 + 𝜀)

(Here: 𝜃0 = −4.0777, 𝜃1 = 1.5046)

Here sigm (𝑥) = 1
1+ e−𝑥 is the sigmoid or logistic function. □

Example 3.8 (Classification). The following data of insects have been observed:

Width x1 Length x2 Label
9 mm 8 mm ladybug x
3 mm 22 mm caterpillar •
8 mm 10 mm ladybug x
2 mm 20 mm caterpillar •

Width x1 Length x2 Label
7 mm 8 mm ladybug x
2 mm 24 mm caterpillar •
4 mm 19 mm caterpillar •
8 mm 7 mm ladybug x

Depicted in a diagram, the data can be classified into two categories:

0 2 4 6 8 10
width

0

5

10

15

20

25

le
n
g
th

caterpillar

ladybug

Model:
𝑦 = sgn (𝜃0 + 𝜃1𝑥1 + 𝜃2𝑥2 + 𝜀)

(Here: 𝜃0 = −0.025, 𝜃1 = −0.259,
𝜃2 = 0.108)

Here 𝑦 = +1 represents the class “caterpillar” and 𝑦 = −1 the class “ladybug.” □

3.4 Methods of machine learning
Methods of data analysis and machine learning are subject to permanent new development.
In addition, the application of these methods is strongly increasing due to the availability
of efficient and user-friendly software. Considering this background, we try to present
here a selection of multivariate analysis methods that are of particular importance both in
university education and in practical applications.

Table 3.3 gives an overview of common methods of machine learning and statistical
analysis, most of which we will deal with in these lecture notes. For a more comprehensive
survey see, for instance, Backhaus et al. (2016:p. 24), de Vries (2020:§1.2), and Hastie
et al. (2009).

Each of these methods bases on a specific statistical model. For instance, linear
regression applies a model with a linear function 𝑓 , such as in Equation (3.4). So in fact
the choice of the appropriate method to study given statistical data can be reduced to the
selection of “the” appropriate model. Model selection is a complex issue and is discussed
in detail in Hastie et al. (2009:§7). Eespecially for linear regression model selection, see
James et al. (2013:[§6).

To offer an orientation in the “jungle” of models, in the following sections we classify
the various statistical methods according to different criteria, namely according to the
scales of their variables, to the type of learning, and to the level of structure recognition.

36 Andreas de Vries: Machine Learning

Method Typical Example of Use
Regression
regression analysis influence of price, advertising expenses, and income on the sales

volume
times series analysis analysis und forecast of the temporal evolution of the sales volume
Classification
analysis of variance effect of alternative packaging design on the sales volume of a prod-

uct
discriminant analysis credit rating to grant a credit w.r.t. sociodemografic features (age,

income, etc.)
logistic regression determining the risk of heart attack according to a patient’s age and

cholesterol level
support vector mach-
ine

medical diagnosis “sick” or “healthy” on the basis of several symp-
toms, e.g., maximum pulse and age for a diagnosis “cardiac”.

contingency table relationship between smoking and lung disease
neural network possible influence factors and forecasts of stock prices
A/B testing determine which of two email texts is more effective to encourage

customers to make a purchase
Clustering
cluster analysis formation of personality types based on psychographic characteris-

tics of individuals
Louvain method detecting clusters in networks
Dimensionality reduction
(explorative) factor
analysis

condensation of a large number of property assessments to underly-
ing evaluation dimensions

conjoint analysis deriving the utility contributions of alternative materials, shapes,
and colors of products to total preference

confirmatoric factor
analysis

verifying given indicator variables to measure hypothetical con-
structs like attitude, purchase intention, loyalty, trust, or reputation

multidimensional
scaling

positioning of competing product brands in the perceptual space of
consumers

correspondence anal-
ysis

representation of product brands and product features in a common
space

Table 3.3. Common methods of data analysis

§3 Theoretical foundations of machine learning 37

3.4.1 Classification by scales of variables
According to our discussion above statistical variables can be distinguished by their scales
of measure, as summarized in Table 3.2. The main categories are categorical versus
metric variables. Moreover we can distinguish independent variables from dependent
ones. Therefore, each method of machine learning may be specified by the scale of the
independent variables and the scale of the dependent variable.6 So there are four logical

Dependent variable
metric categorical

m
et

ri
c regression analysis

principal component analysis
factor analysis

discriminant analysis
logistic regression

In
de

pe
nd

en
tv

ar
ia

bl
e

ca
te

go
ri

ca
l analysis of variance

social network analysis
correspondence analysis
log-linear analysis
contingency table
choice-based conjoint analysis

Table 3.4. Classification by scales of variables

categories which the methods can be sorted in, as is shown in Table 3.4. This table can
be used to decide from the pure structure of the data to be analysed which method can be
applied.

3.4.2 Classification by type of learning
As we have seen in Section 3.1 there are three types of machine learning: supervised,
unsupervised, and reinforcement learning. In this respect, machine learning methods can

Type of Learning Method
supervised learning regression analysis

time series analysis
logistic regression
discriminant analysis
support vector machine
neural network

unsupervised learning principal component analysis
cluster analysis
factor analysis
social network analysis
Louvain method

reinforcement learning deep neural network
A/B-Test

Table 3.5. Classification of methods of data analysis by type of learning

be classified by their type of learning, as is shown in Table 3.5 for some of them. Regression

6cf. Backhaus et al. (2015); Backhaus et al. (2016).

38 Andreas de Vries: Machine Learning

analysis, for instance, can be regarded as a method of supervised learning, since a set of
training data with values of both the independent and the dependent variables is required.
On the other hand, methods like principal component analysis or cluster analysis are
methods of unsupervised learning since the training data do not contain the result explicitly,
but it is only determined by the method itself. Finally, methods of reinforcement learning
are characterized by the fact that they do not need any training data at all, but learn by
doing. The prototypical example of this type of learning is deep neural networks like
AlphaZero.7

3.4.3 Classification by level of structure recognition

In addition to the classification schemes mentioned above, machine learning methods can
also be subdivided according to the way they deal with the structures of the respective
application problem. In this regard a classification into structure-discovering methods and
structure-testing methods often is proposed.8 These two criteria are understood as follows:

Structure-testing methods are statistical methods to mainly test the causal dependency
of a dependent variable on one or several independent variables (factors of influence).
In contrast, structure-detecting methods are statistical methods to discover connections
between variables or objects. A classification of methods of data anlysis according to their

Structure-testing Structure-detecting
regression analysis
times series analysis
discriminant analysis
logistic regression
analysis of variance

principal component analysis
cluster analysis
factor analysis
neural networks
social network analysis

Table 3.6. Classification of methods of data analysis by their levels of structure recognition

respective ability to recognize structures is listed in Table 3.6.
Structural testing methods are mainly used to perform analyses of causality. Examples

include analyses of whether and to what extent the weather, soil conditions and different
fertilizers and quantities affect crop yields, or how strongly the demand for a product
depends on its quality, price, advertising and consumer income. These methods are based
on a statistical model which assumes a priori a factually based causal relationship between
variables, i.e., a notion of which variables (“cause”) influence which other variables
("effect"). Those variables that influence the others are then the independent variables
according to definition 3.3, the influenced variables the dependent ones.

The structure-discovering procedures, too, are based on a statistical models whose
parameters are set using training data. For the principal component analysis, for example,
this is the covariance matrix of the observed data, whose eigenvalues are to be determined
as parameters; in cluster analysis, it is the distance or similarity measure of the data
objects, which is used to minimize the cluster assignments; and in a neural network, it is
its weighted graph, whose edge weights are to be optimized as parameters.

7Silver et al. (2017).
8Backhaus et al. (2016):pp. 15; Backhaus et al. (2015); Ng and Soo (2018).

§3 Theoretical foundations of machine learning 39

3.5 Challenges of machine learning
Machine learning does not necessarily run like clockwork returning perfect results. In-
stead, it has its pitfalls and cave-ats, but also some serious problems. Two principal
problems of machine learning concern the applied model, the other the quality of the
training data.

3.5.1 Problems of model choice: underfitting and overfitting
The basic problems of a wrong model choice are underfitting and overfitting. To clarify
these notions we first recall the basic aim of machine learning: Machine learning is a
process to fit a model to some given observed or otherwise input data. The model which
is to be fitted depends on the method that is applied, cf. Table 3.3. Two typical classes of
methods are regressions and classifications. Let us consider underfit and overfit for these
two cases.

Remark 3.9. Roughly said, a regression fits the parameters 𝜽 of a given continuous
function 𝑓 (𝒙, 𝜽), given the data 𝒙 and 𝑦, cf. Example 3.6. On the other hand, a
classification fits a model with a discrete (i.e., not continuous) function 𝑓 (𝒙, 𝜽) which
separates the data points by a quality 𝑦, cf. Example 3.8. Let us assume that we have the
two data sets as depicted in Figure 3.1.

Figure 3.1. Given training data for a regression (left) and a classification (right).

The first crucial step is to guess a model which is suitable to the data. Should we use a
linear model? Figure 3.2 depicts this approach in case of a regression and a classification.

Figure 3.2. Linear models for regression (left) and classification (right).

Or should we better use a nonlinear model as in Figure 3.3? There is no clear and

Figure 3.3. Nonlinear models for regression (left) and classification (right).

unique criterion to decide which model should be used to express a functional relationship

40 Andreas de Vries: Machine Learning

between the data 𝒙 and 𝑦. Moreover, it is not clear how many parameters 𝜽 should be
provided. The real problem is that we usually do not know the model to be applied. □

We sum up the problems of underfitting and overfitting by Table 3.7. The reason for
both of these phenomena is the same, namely an unappropriate model. Underfitting is
caused by a model that is too simple to represent the true functional relationship, whereas
overfitting is caused by a model that is to complex, i.e., dajusted too tightly to the training
data, such that it cannot generalize to new data. Therefore, in both cases the statistical or

Underfitting Overfitting True relation

Table 3.7. Underfitting and overfitting of regressions and classifications.

the causal relations are not understood well enough.
In practice, the choice of a model is a trade-off between model complexity versus

concordance with the training data, but we usually do not know the tipping point. That
is, we usually do not know: When exactly is the optimum of generalization reached for a
simplest possible model?

C
on

co
rd

an
ce

Model complexity

Optimum

Training data

General data

Figure 3.4. The choice of the best model usually is a trade-off between model complexity
and concordance with the training data.

In fact the choice should be guided by Occam’s Razor, cf. Section 2.4 on p. 25 above:
From various models of a phenomenon the simplest one is to be preferred. In other words:

A “good” model is as simple as possible and as complex as necessary.

§3 Theoretical foundations of machine learning 41

For regressions we will consider some measures to compare different models quantitatively.
A common measure is the BIC, basing on the Bayesian version of Occam’s razor (2.8). It
is defined on page 58 below.

3.5.2 Data quality
A further problem of machine learning concerns the quality of the training data. We
usually do not know how “good” or “bad” the training data are that we apply. Bad data
may be causd by the following issues.

• The data are imprecise; this may be caused by inaccurate measurements, misunder-
standable questionaires, etc . . .

• The data are erroneous or wrong

• The data are non-representative, “untypical”.

Even applying an ideal model, with wrong data the machine learns the wrong!

4
Introduction to Python

Overview
4.1 Basic language elements . 43

4.1.1 Input and output . 43
4.1.2 Elementary operations . 44

4.2 Control structures . 45
4.2.1 Conditional statements with if . 45
4.2.2 Loop structures . 46
4.2.3 Deep loops . 47
4.2.4 Functions . 47

4.3 Libraries and modules . 48
4.3.1 Pandas . 50
4.3.2 Scikit-Learn . 51
4.3.3 Statsmodels . 52

4.4 Problems . 52

In these lecture notes we will work with programs written in Python. We therefore will
give here a short introduction to this language.

Python is a dynamically typed and object-oriented scripting language with support for
functional programming. It was developed in 1991 by Guido van Rossum in Amsterdam
and named after the British comedians Monty Python which were popular in the 1970s.
The API documentation is online at

https://docs.python.org/

A quick guide to install Python and the packages essential for this teaching brief on various
platforms can be found on my web page

https://math-it.org/AI/installations.html

There the steps are given to install the Jupyter Notebook, which is commonly used for
programming with Python and which allows interactive in the browser input of source
code and its execution.

42

https://docs.python.org/
https://math-it.org/AI/installations.html
https://jupyter.org/

§4 Introduction to Python 43

Reservierte Wörter
and as assert break class

continue def del elif else

except finally for from global

if import in is lambda

nonlocal not or pass raise

return try while with yield

Literale
False None True 12.3 'abc'

(Bildquelle: python.org)

Python
Built-in
Types

NoneType None

bool True, False

numbers

sequences

maps

sets

int 1234567890123456789

float 3.14, 2.7e-12

complex 1+1j

immutable

mutable

str 'Wort', "Text"

tuple (2, 3, 5, 7)

range range(10), range(0, 10, 1)

list [2, 3, 5, 7]

immutable

mutable

frozenset frozenset({2, 3, 5, 7})

set {2, 3, 5, 7}

dict {"A":2, "B":3, "C":5, "D":7}

Documentation: https://docs.python.org/3/library/stdtypes.html

Figure 4.1. Python’s reserved words and built-in datatypes

4.1 Basic language elements
Python’s reserved words and built-in datatypes are shown in shown in Figure 4.1. So
Python has several basic data types like strings ("..." or ’...’), Boolean values (True,
False), integers of any size, floating point numbers and complex numbers, lists [...,

...]. Statements in Python are terminated by a linebreak. Blocks of statements are
formed by indentation. Line-by-line comments are marked by #. The assignment operator
= determines both value and type of a variable:

a = 1 # assigning an integer

a = 1.2 # assigning a floating-point number

a = 1 + 5j # assigning a complex number

a = 'a string' # assigning a string

a = "also " + a # assigning a concatenated string

a = [2, 3, 5, 7] # assigning a list

4.1.1 Input and output
The simplest ways for inputs and outputs in Python are the functions input and print. A
string or the value of a variable a is output with the with the command
print(a)

multiple values to be printed can be separated with commas:

print('a =', a)

Numbers can be output as f-strings, or formatted string literals, formatted with the prefix
f or F:

print(f'{314.1592:.2f}') # => 314.16

print(F'{31415.92:,.0f}') # => 31,416 with digit group separator

print(f'{0.314159:.2%}') # => 31.42%

Immediately after the formatting prefix there must be a string with a curly bracket, the value
to be formatted, a colon, the format specifier, and a closed curly bracket: f"{wert:spec}".

https://www.python.org/community/logos/
https://docs.python.org/3/reference/lexical_analysis.html#f-strings

44 Andreas de Vries: Machine Learning

With the specifier ".2f" the value is represented as a decimal number rounded to two
decimal places. With ",.0f" (i.e., with comma before the dot!) it will be rounded
accordingly to 0 decimal places and provided additionally with a comma as digit group
separator for numbers greater than or equal to 1000.

Input from the keyboard can be read in with input:
input = input("Enter text: ")

A text box then appears where text can be entered and stored in the variable input by
pressing the return key.

4.1.2 Elementary operations
As in most programming languages, Python enables the basic arithmetic operations by
simple operators. Accordingly, string concatenation and common arithmetic operations
in Python are listed in Table 4.1. Special features of Python are the two ways to divide

Operator Meaning Example Result
+ addition, sign 2 + 4, +1 6, 1
+ concatenation (strings) "ab"+"c", '12'+'3' 'abc', '123'
- subtraction, sign 2 - 4, -1 -2, -1
* multiplication 2 * 4 8

/ division 7 / 2 3.5

// integer division 7 // 2 3

% modulo (remainder of division) 7 % 2 1

** power 7 ** 2 49

Table 4.1. Concatenation und arithmetic operations in Python

two numbers, namely the always real-valued division with / according to IEEE 754), and
the integer division with //.

Logical (or Boolean) operators for NOT, AND as well as OR also exist in Python, they
are listed in table 4.2. Here the negation receives only one Boolean value True or False

Operator Meaning Example Result
not Verneinung not True, not False True, False
and logisches UND True and False False

or logisches ODER True or False True

Table 4.2. Logical operations in Python

and always results in the other value of it. The logical operators and and or, on the other
hand, always combine two Boolean values, where and is True only if both values are True,
and vice versa or only if both values are False.

Important standard functions in Python are listed in table 4.3. They are used throughout
in this lecture notes, especially len() and range(). The function len expects a sequence or
a set and returns its length as a value. The function range(𝑥0, 𝑥max, Δ) creates a sequence
of numbers (actually an “iterator”)

𝑥0 → 𝑥0 + Δ → 𝑥0 + 2Δ → . . . → 𝑥0 + 𝑛Δ,
so that the last sequence member is real smaller 𝑥max. All parameters must be integers.
If the third parameter is omitted, the step size is 1. If the second one is also omitted, the
sequence goes from 0 to 𝑥0 − 1. If you want to have the sequence as a list, you can do this
by the statement

https://de.wikipedia.org/wiki/IEEE_754

§4 Introduction to Python 45

Function Meaning Example Result
int() conversion to an integer int(1.2), int("123") 1, 123

float() conversion to a floating point number float(12), int("1E-12") 12.0, 1e-12
str() conversion to a string str(1.2), str("123") "1.2", "123"
len() length of a sequence or set len([2, 3, 5]) 3

sum() sum of a sequence or set sum([2, 3, 5]) 10

list() sequence or set as a list list({2, 3, 5}) [2,3,5]

range() creation of a range range(3,18,5) 3→8→13

round() rounding of floating point numbers round(3.1415,2) 3.14

Table 4.3. Important standard functions in Python

list(range(4)) # gives [0,1,2,3]

Similarly, with
sum(range(1,9,2)) # => 1 + 3 + 5 + 7 = 16

we obtain the sum of all numbers in the range.

4.2 Control structures
Python has the control structures common in an imperative programming language, con-
trolling the flow of the individual statements. In detail, these are conditional statements,
loops, and subroutines, programmable in Python as functions.

4.2.1 Conditional statements with if

The conditional execution of a block of statements is programmed in Python by if, an
(optional) alternative by else:
x = 6

if x < 0:

print('negative')

else:

print('non-negative')

Te expression following if is a condirion and can therefore be either True or False. In
case that the if-branch contains only a single statement it can be written directly behind
the colon. Several statements, however, must be indented to form a block. The following
comparison operators for numbers are possible:

equal to: a == b

not equal to: a != b

less than: a < b

less or equal: a <= b

greater than: a > b

greater or equal: a >= b

A multiple case discrimination, i.e., a selection from multiple options, can be programmed
by an “else-if ladder” with elif (“else if”):
month = 4

if month in (1, 3, 5, 7, 8, 10, 12):

days = 31

elif month in (4, 6, 9, 11):

days = 30

else: # only remaining: month == 2

days = 28

print("Month ", month, " has ", days, " days")

46 Andreas de Vries: Machine Learning

If a single value is to be determined by a simple case distinction, Python still allows the
possibility of a single conditional expression with trailing if – else:

x if condition else y

Depending on the condition, this expression yields either the value x or the value y. It can
be stored in a variable or printed directly with print. For example, with the statements

from time import localtime

print("Good " + ("morning" if localtime().tm_hour < 12 else "day"))

will print a greeting that matches the time of day (. . . at least between 2am and 6pm).

4.2.2 Loop structures
In Python there are two types of repetition structure by which blocks of statements can be
executed several times:

• The list-controlled loop (for loop):list-controlled
loop with for

for i in range(3): # [start = 0,] end = 3-1 = 2

print(i) # -> 0, 1, 2

Property: The number of interations is certain at the start of the loop.

• The while loop:while loop

not_guessed_yet = True # Boolean variable

while not_guessed_yet: # repeat while True ...

tip = input("Guess the number: ")

not_guessed_yet = (tip != "7")

Property: The number of iterations may be undetermined at the start of the while
loop.

Every repetition structure in Python can be interrupted by the expression break.

n = int(input("Input an integer > 2 ein: "))

for i in range(2,n):

if n % i == 0: break # i divides n: interrupt the loop!

if i == n - 1: print (n, " is prime")

else: print (n, " is not prime: ", n, "/", i, "=", n//i)

In Python, if you want to iterate through a given list [...] and create a new one from
its elements, you can use the list comprehension

new_list = [expression for entry in list]

The entries of the new list are then computed in expression. Example:

new_list = [i**2 for i in [2,3,5,7,11]] # => [4,9,25,49,121]

You can also include a filter condition with an if expression before the outer closing
parenthesis:

new_list = [x for x in range(30) if x % 7 == 0] # => [7,14,21,28]

§4 Introduction to Python 47

4.2.3 Deep loops
Loops can be cascaded, for instance to run through two-dimensional data structures such
as matrices:

for x in range(4):

for y in range(5):

print((x,y), end=" ") # blank instead of linebreak

print() # print linebreak

yields the output:

(0, 0) (0, 1) (0, 2) (0, 3) (0, 4)

(1, 0) (1, 1) (1, 2) (1, 3) (1, 4)

(2, 0) (2, 1) (2, 2) (2, 3) (2, 4)

(3, 0) (3, 1) (3, 2) (3, 3) (3, 4)

With a deep loop we can also print the truth table of logical operations of several variables:

print("a b c\t (a or b) and c")

for a in range(2):

for b in range(2):

for c in range(2):

3 Boolean variables and a logical expression:

print(a, b, c, "\t ", int((a or b) and c))

This yields the truth table of the logical expression (𝑎 ∨ 𝑏) ∧ 𝑐. (Try it!):

a b c (a or b) and c

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

4.2.4 Functions
Functions are defined in Python with the reserved word def and a colon, and are called with
their names and inserted values. For example, we define the function 𝑓 (𝑥, 𝑦) = 𝑥2 + 𝑦2 by:

def f(x,y):

return x**2 + y**2

f(3,4) # -> 25

The variables of a function are called parameters, the values used in the call arguments.
Parameters may be given default values which will be used if they are not given a value
when the function is called:

def f(x=3,y=4):

return x**2 + y**2

f(), f(9, 12), f(y=0) # -> (25, 225, 9)

48 Andreas de Vries: Machine Learning

A special feature of Python: a tuple, invoked as the last parameter of a function as a starred
expression, can be unpacked with the splat operator :starred expres-

sion * unpacks
a list of param-
eters

def f(x, y):

return (x**2 + y**2)**0.5

lst = (3, 4)

f(*lst) # -> 5

This way the list (3,4) is split into the two separate parameters 3 and 4. However, the
expression works exclusively in function calls.

In Python, a function can also be defined within a function, thus being returned as a
variable:
def f(x):

def g(y): return x**y

return g

f(2)(3) # => 8

More briefly, we can define the inner function as a lambda expression, that is, an anony-
mous function:
def f(x):

return lambda y : x**y

f(2)(3) # => 8

4.3 Libraries and modules
In addition to the built-in language elements of Python’s standard library there are numer-
ous modules for special purposes that can be combined into libraries, or packages, thatmodule

library,
package

provide special functions or objects.1 They can be imported anywhere in a program.
The Python libraries and modules used in this lecture notes are shortly introduced in

this section. Hints for complete installation we refer to http://haegar.fh-swf.de/KI/In-

stallationen.html.
In the following exemplary program, two very commonly used libraries are imported,

NumPy (pronounced “NUM-py”) for numerical calculations and arrays (which do notNumPy

exist in Python as a standard data type, cf. Fig. 4.1), as well as matplotlib for visualiza-matplotlib

tions, especially for the output of function plots. Mostly, however, not the entire library
Matplotlib is used, but only the module pyplot:
import numpy as np # module for numerical computations

import matplotlib.pyplot as plt # modul for funkcion plots

x = np.arange(0, 6*np.pi, 0.1) # array [0, 0.1, ..., 6*pi]

plt.plot(x, np.sin(x)) # function plot (𝑥, sin 𝑥)
plt.show() # close and show all plt actions so far

The program first creates an array x from 0 to 6𝜋 (exclusive) in 0,1 steps with the function
np.arange; np.arange is thus the “array” variant of the Python standard function range,
which can only take integer values. In the next statement, the values of the array x are
plotted against the array np.sin(x) of their sine values. This is a very remarkable feature
of many NumPy functions: If a single number is passed to it, it returns a number, too;arrays as argu-

ment of a func-
tion 1. https://docs.python.org/3/library/

http://haegar.fh-swf.de/KI/Installationen.html
http://haegar.fh-swf.de/KI/Installationen.html
https://en.wikipedia.org/wiki/NumPy
https://docs.python.org/3/library/

§4 Introduction to Python 49

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 4.2. The function graph of the sine function with the module matplotlib

but if an array is passed to it, the function calculates the function values of the individual
array values and returns them in an array of the same size as a result! The standard variant
of plt.plot represents the two passed arrays as a two-dimensional function graph whose plt.plot

points are connected by a line. With plt.show() all previous plt actions (here only one) plt.show

are completed, summarized, and shown. In this program, this yields the function graph of
the sine function shown in Figure 4.2. In the source code you can see that you can give the alias with as

module an alias name with the reserved word as that can be used instead of the module
name.

In the following example program a variant of the import statement g imports only a from

single module or library elements with from which can be used:

%matplotlib inline

from numpy import pi, linspace, cos

import matplotlib.pyplot as plt

x = linspace(0, 6*pi, 100) # array [0, 0.1, ..., 6*pi]

plt.plot(x, cos(x)) # function plot (𝑥, cos 𝑥)
plt.savefig("cos.png") # saves the graphics as png

plt.show() # closes an shows all plt actions

However, having imported elements from a library, only these elements are available
from it. The example program shows the function graph of the cosine function from
figure 4.3. But there are also other variants in this program as compared to the previous

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 4.3. The function graph of the cosine function

one. E.g., instead of np.arange here the very similar function np.linspace is used. It np.linspace

expects start and end value of the array and the number of entries as parameters. Thus
for np.linspace the number of entries is in the foreground, whereas for np.arange it
is the step size between the entries. In the second to last line of the source code, the
statement plt.savefig("cos.png") saves the graphic to a file cos.png in the root directory
of the Jupyter notebook. Matplotlib automatically recognizes which format to use by the plt.savefig

extension, here it is PNG, but possible are also PDF, SVG, TIFF or JPG.

Note: Working with the Jupyter notebook, the statement %matplotlib inline in the first
line of a Python program effects that the plots are displayed on the first run of the program.

50 Andreas de Vries: Machine Learning

Remark 4.1. There are some good books about Python. One that I always use as a
reference for the basic language elements is Weigend (2019). However, since Python
has had a very active community of developers for new libraries and modules from the
beginning, especially due to the open architecture of the language, books on these points
are often quickly out of date. In my opinion, the best way to stay up to date on Python
& Co are internet sources, and here especially the Scipy Lecture Notes [SciPy], the link
to which is listed at the end of these lecture notess. They contain a good introduction to
NumPy [NumPy] and to Matplotlib [MPT]. □

4.3.1 Pandas
Pandas has established itself as a kind of base module for machine learning in Python,
https://pandas.pydata.org/. It provides powerful and flexible methods for imports,
transformations, and simple analyses of external data. For our purposes, particularly
important are the methods described in https://pandas.pydata.org/docs/user_guide/ for
numerous data formats, especially text-based CSV files (with extension .csv, sometimes
also .xls), or binary file formats like Excel, OpenDocument Spreadsheets, or SPSS.

DataFrames and Series. The two central data structures in Pandas are the DataFrame
and the Series. A DataFrame is a two-dimensional data structure, i.e., a table in which the
data are organized as columns (column) and each row is identified by an index.

Index column name 1 column name 2 · · ·
𝑖0 𝑥01 𝑥02 · · ·
𝑖1 𝑥11 𝑥12 · · ·
...

...
...

Each column has a name with which it can be addressed as in a list with square brackets:

df['column name']

The index values can be natural numbers, strings or times (Datetime objects). Accordingly,
a single value is obtained by addressing its index value with a second square bracket:

df['column name']['index value']

The name of the row number 𝑖 is obtained with df.index[i], the names of column number
𝑗 with df.columns[j].

A Series is a one-dimensional structure roughly equivalent to a DataFrame with only
one column. In particular, it also has an index. We will use Series in part III to store time
series.

To get values of a DataFrame df as a numeric array, we need to pass the desired column
(DataFrame or Series) to the Numpy object n_c:

import numpy as np

X = np.c_[df['column name']]

The c_ object in Numpy expects a list of entries and generates a numeric column matrix
from it (hence c_ like “column”). Note that c_ expects an angular bracket immediately, i.e.,
it does not expect a round bracket like a function. Often we will need the column values of
a Pandas object not as a numeric column matrix array[[...]], but as a one-dimensional
array. For this, the Numpy function ravel is useful, which generates a one-dimensional
array from the entries of a matrix, but also of a higher level tensor. With

https://pandas.pydata.org/
https://pandas.pydata.org/docs/user_guide/

§4 Introduction to Python 51

X = np.array([[1, 2, 3], [4, 5, 6]])

x = np.ravel(X)

for instance, a matrix 𝑋 and an Array 𝑥 is generated:
X = [[1 2 3]

[4 5 6]] x = [1 2 3 4 5 6]

Example 4.2. In machine learning and data analysis, we will work almost exclusively with
external data. The following typical case study will show the first steps for this. Given is
a file children.csv with the content

Größe;Alter

107.9;5

149.8;12

85.5;2

115.5;6

138.4;10

the columns of which are separated by a semicolon. To import them into the directory
datasets, the following statements
import pandas as pd

df = pd.read_csv("./datasets/kinder.csv", sep=";")

are sufficient It should be noted that the folder here is located in the root directory of the
Jupyter notebook. Then the whole content is saved as DataFrame stored in the variable
df. With print(df) you can control its content:

Height Age

0 107.9 5

1 149.8 12

2 85.5 2

3 115.5 6

4 138.4 10

The parameter sep is optional, the default value is ’,’ for the comma as column separator.
The optional parameter encoding for text encoding is often important as well, here the
default value is ’UTF-8’. For Windows files it is often ’ISO-8859-1’. □

Pandas DataFrames and Series also provide convenient functions for plotting their
data. The optional parameter kind can be used to specify the type of plot, its default value
is ’line’. For example, the statement
df.plot(kind='bar')

yields the function graph in Figure 4.4. In the standard variant of the function for
DataFrames, a legend with the column names is displayed. If you do not want them to
be displayed, pass legend=None as a parameter. Other possible display types are listed un-
der https://pandas.pydata.org/pandas-docs/stable/user_guide/visualization.html#

other-plots.

4.3.2 Scikit-Learn
Scikit-Learn is a library for Python for machine learning. and is imported as sklearn. The
library provides very many models for data analysis as classes (also called "estimators").

https://pandas.pydata.org/pandas-docs/stable/user_guide/visualization.html#other-plots
https://pandas.pydata.org/pandas-docs/stable/user_guide/visualization.html#other-plots

52 Andreas de Vries: Machine Learning

0 1 2 3 4

0

20

40

60

80

100

120

140
Größe
Alter

Figure 4.4. Graph of the instruction df.plot(kind="bar")

Most of them provide the same functions and syntax for specifying and adjusting model
parameters, so for the most part they are uniformly and largely interchangeably applicable.
Important classes of scikit-learn are listed in table 6.1. The models range from regression to
classification to clustering, but there are also classes for dimension reduction and functions
for model selection and data preprocessing. Scikit-Learn is extensively documented under
http://scikit-learn.org.

4.3.3 Statsmodels
The Python module statsmodels enables statistical and econometric analyses. For time
series analysis it is better suited than scikit-learn. The API documentation can be found at:
http://www.statsmodels.org/. For time series analysis the library statsmodel.tsa.sta-

tespace for non-periodic and periodic processes is provided, in particular the SARIMAX
model. We will deal with statsmodels in depth in part III of this lecture notes in connection
with the topic of time series analysis. Further information is available at https://www.
statsmodels.org/stable/statespace.html can be found.

4.4 Problems
Problem 4.1 (Literals in Python). Which of the following strings are valid Python
literals?

Literal Valid Result / Explanation
1.000e-0.2

2e+1j

0x567

00x567

0o567

0o568

'Größe'

''Größe''

"Größe"

b'Größe'

"Komm 'rein!"
00023e001

(1; 2; 3)

http://scikit-learn.org
http://www.statsmodels.org/
https://www.statsmodels.org/stable/statespace.html
https://www.statsmodels.org/stable/statespace.html

§4 Introduction to Python 53

First, fill in the table according to your thoughts before you test your guesses with Python.
The last column should contain the result of the string if it is a valid literal and always a
short explanation.

Problem 4.2 (Data types in Python). Generally, in a computer program concrete or
mental objects of reality must be represented by suitable data types of a programming
language. In the following table, specify a suitable data type in Python for each object of
reality.

Object of Reality Data Type Exemplary Literal
radius of atoms float 3.2e-13

name of flower
name of participants of a race
score of a soccer match (e.g., 3:1)
name, prename and age of a per-
son
name, prename and age of a par-
ticipant of a race
table, in which the chemical ele-
ment symbols are stored with their
English and German names (e.g.,
H → hydrogen, Wasserstoff)

Problem 4.3 (Words of an alphabet). Write a Python program that prints all two-letter
words of a given alphabet on the screen. The alphabet here should be given as a string, e.g.,
alphabet = '01' with two symbols (“letters”) or alphabet = 'abc' with three symbols.

Problem 4.4 (Brute force algorithm of DNA). The DNA, carrier of the genetic informa-
tion of living organisms and some viruses, is a nucleic acid and contains the bases adenine
(A), guanine (G), cytosine (C) and thymine (T). It is a giant molecule in the form of a
double helix and consists essentially of a sequence of the four base pairs AT, TA, GC and
CG.

(a) How many combinations are theoretically possible to form a sequence from four of
these base pairs? (An example of such a combination is AT AT GC TA.)

(b) Write a Python program that outputs all possible combinations of four base pairs of
DNA.

Problem 4.5 (Multiplication trainer for the small multiplication tables). Program a
multiplication trainer for the small multiplication table using Python. The user is to be
presented with a total of five arithmetic problems in succession, following the pattern 9*8

= which is to be answered by entering the result. If the entered result is wrong,
there is an appropriate feedback and a new answer to this task is expected. The next
arithmetic task is not presented until the correct result has been entered beforehand. After
five correct entries, the user is told how many seconds it took in total.

notes: In Python, the system time (in seconds since 1/1/1970 0:00 AM) is obtained
with the time() function of the time module. A random number is generated with the
randint function from the numpy.random module. For the syntax please consult the API.

https://de.wikipedia.org/wiki/Desoxyribonukleins%C3%A4ure

54 Andreas de Vries: Machine Learning

Problem 4.6 (Error bars with NumPy). (a) The function randnof the module numpy.random
seem to have something to do with standard normally distributed random numbers
𝜀 ∼ 𝑁 (0, 1). But what exactly do randn(3) and randn(2,3) output?

(b) What instruction do you need to program to use randn to generate normally
distributed random numbers 𝜀 ∼ 𝑁 (𝜇, 𝜎) with a mean 𝜇 and standard distribution 𝜎?

(c) The cosmic background radiation is an electromagnetic radiation flowing through
the whole universe in the microwave range, with a frequency around 𝑓 = 160 GHz or
a wavelength around 𝜆 = 𝑐/ 𝑓 = 1,7 mm. It can only be explained as an “afterglow” of
the photon flash after the Big Bang, which in the meantime has very much weakened
and shifted into the long-wave radio range due to the expansion of the universe. In the

0 1 2 3 4 5 6 7
1e11

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

1e 18

0 1 2 3 4 5 6 7
1e11

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

1e 18

0 1 2 3 4 5 6 7
1e11

1

0

1

2

3

4

1e 18

Figure 4.5. The spectrum of the cosmic microwave background for 𝑇 = 2,728 K with
errorbars of width 𝜎 = 0,1% of 𝑦max, 𝜎 = 1% of 𝑦max and 𝜎 = 10% of 𝑦max, where 𝑦max
is the maximum value of the radiant energy density.

early 1990s, the COBE satellite in Earth orbit measured the intensity of the background
radiation. The measurement results confirmed the predicted Planck radiation distribution
to within 0,01% accuracy for the temperature value 𝑇 = 2,728 K, cf. 4.5 figure at left.
This distribution function is given by

𝐵(𝑓 , 𝑇) = 2ℎ 𝑓 3

𝑐2
(
exp

(
ℎ 𝑓

𝑘𝑇

)
− 1

) (4.1)

with the constants 𝑐 for the speed of light, ℎ for Planck’s quantum of action, and 𝑘 for
the Boltzmann constant2. To illustrate how amazingly small this inaccuracy is, create a
Python program in which the Planck distribution is implemented as a Python function
𝐵(𝑓 , 𝑇) and, for𝑇 = 2,728 and a range of values for 𝑓 from 0 to 7 ·1011 with 67 data points
three error bar plots for an 𝑁 (0, 𝜎)-normally distributed error vector 𝜀 with 66 measured
values each for the error widths 𝜎 = 0,1% of 𝑦max, 𝜎 = 1% of 𝑦max and 𝜎 = 10% of 𝑦max
to the maximum value 𝑦max of radiance as shown in Figure 4.5.
Hints: Use the physical constants from the module scipy.constants and the matplotlib
function errorbar.

2Unsöld and Baschek (1999):pp. 110, 493.

Part II

Data analysis

55

5
Regression

Overview
5.1 Residuals and scoring of fitted regression models 57
5.2 Linear regression in one dimension . 59
5.3 Multiple linear regression . 61
5.4 Nonlinear regression . 64

5.4.1 Resolving the nonlinearity with base functions 65
5.4.2 Curve fitting . 68
5.4.3 Initial values of the fitting process . 69
5.4.4 Case study: Kepler’s model of planetary orbits 70
5.4.5 Confidence intervals of fitted models 73

5.5 Problems . 74

In Definition 3.3 above we introduced the notion of a statistical model 𝑓 : R𝑛 × R𝑘 → R,

𝑦 = 𝑓 (𝒙, 𝜽) + 𝜀.

Here the function 𝑓 describes a relationship between observed data 𝒙 ∈ R𝑛 and 𝑦 ∈ R,
depending on some parameters 𝜽 ∈ R𝑘 . The error term 𝜀 ∈ R is a random variable and
not directly observable in the data. The observed data can be represented by vectors and
matrices,

𝒚 =
©­­«
𝑦1
...
𝑦𝑚

ª®®¬ 𝑿 =
©­­«
𝑿1
...

𝑿𝑚

ª®®¬ =
©­­«
𝑥11 · · · 𝑥1𝑛
...

...
𝑥𝑚1 · · · 𝑥𝑚𝑛

ª®®¬ , (5.1)

cf. Remark 3.4. In other words, the function 𝑓 represents the model and the parameters 𝜽
its “degrees of freedom”. The problem of machine learning, and statistical data analysis,
then is to derive the values of the parameters 𝜽∗ from some observed data 𝑿 and 𝒚.
Especially in machine learning, this derivation process is called “fitting the model.”

If now all observational data, i.e, both the independent variables 𝒙 and the dependent
variable 𝑦, are metric quantities, the model is called a regression model, and the process
of deriving the parameters from the observations is called regression analysis. The most
common form of regression is the linear regression. But before we deal with it, we first
consider the question of how to score the goodness of a fitted regression model.

56

§5 Regression 57

5.1 Residuals and scoring of fitted regression models
If a regression model 𝑓 (𝒙, 𝜽) has been fitted, the parameters 𝜽 have been determined to
be 𝜽∗ such that the residuals

𝑒𝑖 = 𝑦𝑖 − 𝑓 (𝑿𝑖, 𝜽∗) (5.2)

are minimized, given 𝑚 data points 𝒚 and 𝑿 by

𝒚 =
©­­«
𝑦1
...
𝑦𝑚

ª®®¬ and 𝑿 =
©­­«
𝑿1
...

𝑿𝑚

ª®®¬ , (5.3)

as has been shown in Remark 3.4. Therefore, with 𝑚 data points we have 𝑚 residuals, as

X8

H8

5 (X8 ,)∗)

Figure 5.1. The residuals 𝑒𝑖 = 𝑦𝑖 − 𝑓 (𝑿𝑖, 𝜽∗) of a fitted regression model 𝑓 (𝒙, 𝜽∗).

is depicted in Figure 5.1. But what does it mean to “minimize” the residuals?
The calculation of the minimum residuals depends on the underlying notion of distance.

Usually the method of least squares is used which takes the sum of squares of the residuals.
Historically, it was introduced independently and nearly simultaneously by Gauss and
Legendre. However, different notions of distance are possible and may be more appropriate
to the given application. Some of them we will mention below in section 6.1.1.

The least square method relies on the residual sum of squares RSS. This is the deviation
of the measured value 𝑦𝑖 from the corresponding model value 𝑓 (𝑿𝑖, 𝜽∗):

RSS =

𝑚∑︁
𝑖=1

(
𝑦𝑖 − 𝑓 (𝑿𝑖, 𝜽∗)

)2
. (5.4)

It is the RSS which is minimized to determine the coefficients 𝜽 , if the least square methods
is applied. Vice versa, the sum of squared residues can therefore be used for a fitted model
to determine the coefficient of determination 𝑅2 (pronounced “R squared”):

𝑅2 = 1 − RSS
TSS

with TSS =

𝑚∑︁
𝑖=1

(𝑦𝑖 − 𝑦̄)2. (5.5)

Here TSS represents the total sum of squares of the observed target values. The coefficient 𝑅2 measures
the goodness
of a regression
model

of determination thus indicates the proportion of the scatter of the data that the assumed
model can explain. The closer it is to 1, the better it is. The coefficient of determination
is thus a measure of the goodness of fit of the model and can be used for comparison of
other linear models, for instance with different numbers of coefficients.

58 Andreas de Vries: Machine Learning

Remark 5.1. In Python, a convenient way to compute the goodness of a regression model
fit is to use the r2_score from the package sklearn.metrics. As input it requires the true
target values and the values predicted by the fitted model:

from sklearn.metrics import r2_score

R2 = r2_score(y, y_pred)

□

Definition 5.2. A regression model 𝑓 (𝒙, 𝜽) being linear in its parameters 𝜽 , i.e., satisfying

𝑓 (𝒙, 𝜽) = 𝑔(𝒙) · 𝜽 (5.6)

for some function 𝑔 : R𝑛 → R𝑘 , is called parameter-linear model.

Remark 5.3 (Caveat to use 𝑅2 for nonlinear regression models). Although 𝑅2 is broadly
used to quantify the goodness of a model fit, it is not in general the appropriate measure
for a nonlinear regression model. 𝑅2 works quite well for parameter-linear regression
models and is a valid measure of the goodness of fit, but this is in general not the case for
nonlinear models.1 The reason is that the total sum-of-squares (TSS) is not equal to the
regression sum-of-squares (RegSS) plus the residual sum-of-squares (RSS), as is the case
in linear regression. Here the regression sum of squares is given by

RegSS =

𝑚∑︁
𝑖=1

(
𝑓 (𝑿𝑖, 𝜽∗) − 𝑓 (𝑿𝑖, 𝜽∗)

)2
, (5.7)

and represents the sum of squares of the differences of the model predictions, given the
observed 𝒙 values, and their overall mean.2 The point now is that for a generalized model
𝑓 satisfying (5.6) we have

∑
𝑦𝑖 =

∑
𝑖 𝑓 (𝑿𝑖, 𝜽∗), i.e., the mean of the observed target values

equals the mean of the predicted values.3 Thus, for these models the equality

RegSS =

𝑚∑︁
𝑖=1

(
𝑓 (𝑿𝑖, 𝜽∗) − 𝑦̄

)2
, (for parameter-linear models) (5.8)

holds, and therefore

TSS = RegSS + RSS (for parameter-linear models). (5.9)

In particular, this implies that 𝑅2 ≧ 0. However, this inequality might be wrong for
nonlinear models. Moreover, the comparison of nonlinear models 𝑅2 does not always
yield a clear criterion to select the best one given some observed data. One of the
problems is that 𝑅2, as well as RSS, of models with a different number of parameters
cannot be compared to each other.4 □

Definition 5.4. Given a statistical model 𝑀 with 𝑘 parameters 𝜽 and a data sample (𝑿, 𝒚)
of size 𝑚, the Bayesian information criterion BIC is defined by5

BIC = 𝑘 ln𝑚 − 2 ln 𝐿∗ (5.10)

1Spiess and Neumeyer (2010).
2Spiess and Neumeyer (2010):Additional File 1, esp. Remark 5.
3For a proof, cf. Sen and Srivastava (1990):Theorem 2.1, with 𝑋 replaced by 𝑔(𝒙), and Corollary 2.2.
4cf. James et al. (2013):p. 210.
5cf. Durbin and Koopman (2012):p. 188; Hastie et al. (2009):p. 233; James et al. (2013):p. 212; Pourret

et al. (2008):p. 62; Shumway and Stoffer (2017):p. 50.

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.r2_score.html

§5 Regression 59

where 𝐿∗ = 𝑃(𝜽∗ | (𝑿, 𝒚)) is the maximum likelihood of the model, cf. (1.15) on p. 12,
i.e., 𝜽∗ are the parameter values that maximize the likelihood function. The BIC can be
derived6 from the probability ratio in Definition 2.11, p. 26. How can we interprete the
BIC? Given a specified data sample, the lower the value of BIC of a model, the better the
model.

Remark 5.5. Especially for least square regression models with identically normally
distributed noise variance 𝜎𝜀 (“Gaussian models”) we have 𝜎2

𝜀 = RSS/𝑚, and thus
−2 ln 𝐿∗ = ln𝜎2

𝜀 = ln(RSS/𝑚). Up to a constant depending only on 𝑚, this yields7

BIC = ln(RSS/𝑚) + 𝑘 ln𝑚. (5.11)

On some web resources this is given as a definition of the BIC, but it is not mentioned that
it is valid only for Gaussian models.8 □

Remark 5.6. In Python, the easiest way to calculate the BIC of a Gaussian model, i.e.,
where the residuals 𝑒 are normally distributed around zero, is to define a function bic

which expects as input the residuals 𝑒 and the number of parameters of the model, 𝑘 , and
returns the BIC of the model:

import numpy as np

def bic(e, k):

return np.log(np.var(e)) + k*np.log(len(e))

cf. also https://pypi.org/project/RegscorePy/. □

5.2 Linear regression in one dimension
Example 5.7. As a first example, let us consider a linear regression on the data of the file
children.csv, whose column separator is a semicolon. To do this, we first import it as
Panda’s dataframe df in line 6, and then filter the columns "size" and "age" as column
arrays in lines 8 to 11, using the statements from section 4.3.1:
1 %matplotlib inline

2 import matplotlib.pyplot as plt

3 import numpy as np

4 import pandas as pd

5

6 df = pd.read_csv("./datasets/children.csv") # loads file into a Pandas DataFrame

7

8 features = ["Height"] # list of independent variable(s)

9 target = "Age" # dependent variable

10 X = np.c_[df[features]] # extract feature values as columns of a matrix

11 y = np.c_[df[target]] # extraxt target values

12

13 from sklearn.linear_model import LinearRegression

14 model = LinearRegression() # generate linear regression as model

15 model.fit(X, y) # adjust the model parameters

16 print("Parameter: 𝜃0 =", model.intercept_, ", 𝜃1 =", model.coef_)

17

6Hastie et al. (2009):p. 234.
7Shumway and Stoffer (2017):p. 50.
8e.g., https://pypi.org/project/RegscorePy/, https://stackoverflow.com/questions/60823638

https://pypi.org/project/RegscorePy/
https://pypi.org/project/RegscorePy/
https://stackoverflow.com/questions/60823638

60 Andreas de Vries: Machine Learning

18 y_pred = model.predict(X) # model predictions

19

20 plt.scatter(X, y) # scatter diagram of training data

21 plt.plot(X, y_pred, color="red") # regression line of predictions

22 plt.tight_layout() # adjust paddings

23 plt.savefig("children-lin-reg.png") # save plot as PNG

24 plt.show()

In line 13 we import the linear regression model from Scikit-Learn. (Of course, we could
just as easily have done this at the top of the program, but at this position the dependency
appears more clearly). In line 14, we create the model before calculating the relevant
model parameters with the statement model.fit(X,y) in line 15. The two parameters of

90 100 110 120 130 140 150

2

4

6

8

10

12

Figure 5.2. Output of the program for linear regression

the linear regression are the intercept as the first parameter 𝜃0 and the slope 𝜃1 as the
second one, cf. example 3.6. Now to calculate the regression line there are different
possibilities, here we use in line 18 the model prediction with the “test matrix” X, being
equal to the original training data. We store the result as “prediction” in y_pred. The
output of the program is the plot in Figure 5.2 and is caused by the instructions from line
20 to the end.

How good is the model? To evaluate the goodness-of-fit, we apply the 𝑅2 score and
the BIC as considered above:

Model evaluation:

from sklearn.metrics import r2_score

R2 = r2_score(y, y_pred)

print("R2 =", f"{R2:.3%}")

def bic(e, k):

return np.log(np.var(e)) + k*np.log(len(e))

BIC = bic(y - y_pred, 2)

print("BIC =", f"{BIC:.3f}")

For our small data set, we obtain

𝑅2 = 99.463%, BIC = 0.542.

Thus 𝑅2 is close to 1 and seems to be quite good, as we can confirm intuitively from the
plot. Note that the BIC is a measure for model comparison on some given data set, so its
value alone does not have an immediate meaning. □

§5 Regression 61

5.3 Multiple linear regression
So far we have considered regression problems with a single independent variable 𝑥, i.e.,
regression models 𝑦 = 𝑓 (𝑥, 𝜃) with a model function 𝑓 : R × R𝑘 → R. Regressions with
several features 𝒙 = (𝑥1, . . . , 𝑥𝑛), with 𝑛 ≧ 2, are called multidimensional. In principle,
multidimensional regression models can be linear or nonlinear. However, keep in mind
the problems of non-linear models we mentioned at the beginning of section 5.4, which
do not become easier in th multidimensional case. A possible way to do multiple linear
regression in Python is by using PolynomialFeautures of scikit.learn, as described in
section 5.4.1.

For multidimensional regressions the framework as given in Definition 3.3 and Remark
3.4 is still valid. Furthermore, all computations to fit the model formally remain the same,
the only difference being that the algebraic operands of addition and multiplication no
longer are pure numbers 𝑥 and 𝑦 but vectors and matrices. Consequently, the Python
library scikit-learn still is applicable for the multidimensional case. (However, the curve
fitting with scipy.optimize does not work for the multidimensional case.) Let us inspect
this in more detail by the following two-dimensional example.

Example 5.8. 9 The SAT (Scholastic Assessment Test) is a standardized test widely used
for college admissions in the United States. It has two main sections, namely Evidence-
Based Reading and Writing (EBRW, normally known as the “English” portion of the test)
and the Math section. The following table shows the SAT scores of nine students and their
grade point average (GPA, maximum is 4):

SAT-Math 79 71 75 74 70 67 73 79 76
SAT-English 74 76 66 76 76 66 71 71 57
GPA 3.95 3.84 3.68 3.59 3.57 3.49 3.47 3.40 3.08

How do the SAT scores influence the GPA? This question can be answered by a two-
dimensional linear regression, i.e., with the model

𝑦 = 𝑓 (𝒙, 𝜽) = 𝜃0 + 𝜃1𝑥1 + 𝜃2𝑥2 (5.12)

and the data

𝒚 =

©­­­­­­­­­­­­­«

3.95
3.84
3.68
3.59
3.57
3.49
3.47
3.40
3.08

ª®®®®®®®®®®®®®¬
, 𝑿 =

©­­­­­­­­­­­­­«

79 74
71 76
75 66
74 76
70 76
67 66
73 71
79 71
76 57

ª®®®®®®®®®®®®®¬
(5.13)

(𝑚 = 9) Linear regression now solves the equation 𝒚 = 𝑓 (𝑿, 𝜽)+𝜺 with respect to the three
parameters 𝜽 = (𝜃0, 𝜃1, 𝜃2)𝑇 minimizing the residual squares. This equation is explicity
given by the system of 𝑚 = 9 equations

3.95 = 𝜃0 + 79 · 𝜃1 + 74 · 𝜃2 + 𝜀1

3.84 = 𝜃0 + 71 · 𝜃1 + 76 · 𝜃2 + 𝜀2

. . .

3.08 = 𝜃0 + 76 · 𝜃1 + 57 · 𝜃2 + 𝜀9

9Sen and Srivastava (1990):pp. 29, 34.

62 Andreas de Vries: Machine Learning

We can implement the regression by the following Python program:
import numpy as np

import pandas as pd

from sklearn.linear_model import LinearRegression

from sklearn.metrics import r2_score

def bic(e, k):

return np.log(np.var(e)) + k*np.log(len(e))

df = pd.read_csv("./datasets/GPA-vs-SAT-scores.csv", sep="\t") # loads file

features = ["SAT-Math","SAT-English"] # list of independent variables

target = "GPA" # dependent variable

X = np.c_[df[features]] # extract feature values as a matrix

y = np.c_[df[target]] # extraxt target values

model = LinearRegression() # generate linear regression as model

model.fit(X, y) # adjust the model parameters

print("Parameter: 𝜃0 =",model.intercept_,", 𝜃1 =",model.coef_[0,0],", 𝜃2 =",model.coef_[0,1])

y_pred = model.predict(X) # model predictions

Model evaluation:

R2 = r2_score(y, y_pred)

print("R2 =", f"{R2:.3f}")

print("BIC =", f"{bic(y - y_pred, len(features)+1):.3f}")

This gives the solution 𝜃0 = 1.22, 𝜃1 = 0.0044, 𝜃2 = 0.029, i.e.,

GPA = 1.22 + 0.0044 · SAT-Math + 0.029 · SAT-English. (5.14)

The model evaluations give

𝑅2 = 0.516, BIC = 3.005. (5.15)

Equation (5.14) seems to indicate that SAT mathematics scores have very little effect on
GPA. But we have to keep in mind that the effect of a variable depends on the other
variables in the model. With 𝑥1 = SAT-Math alone we get

GPA = 3.5538 + 0.0001 · SAT-Math

and model scores of
𝑅2

Math = 4 · 10−6, BIC = 1.533. (5.16)

Thus SAT mathematics scores alone are even worse predictors of GPA, at least for the
nine students of this sample. With 𝑥2 = SAT-English alone we get

GPA = 1.566 + 0.02840 · SAT-English

and model scores of
𝑅2

Engl = 0.511, BIC = 0.818. (5.17)

Comparing the three models with respect to their scores in Equations (5.15), (5.16), and
(5.17), we obtain a contradictory picture. According to the ergibt sich ein widersprüch-
liches Bild. Gemäß der coefficients of determination, 𝑅2, the two-dimensional model is
better than the two one-dimensional ones. The BIC, however, yields a better ranking for
the one-dimensional models. □

§5 Regression 63

Example 5.9. To visualize the regression, we first have to understand that we have to
plot a three-dimensional scatter plot, since together with the target values we have three
variables 𝑥1, 𝑥2, 𝑦. A 3D scatter plot can be implemented in Python with the module
mpl_toolkits.mplot3d. Given the observational data X and y from the code in Example
5.8 above, we obtain have the 3D scatter plot as follows:
%matplotlib notebook

import matplotlib.pyplot as plt

import mpl_toolkits.mplot3d

ax = plt.axes(projection="3d")

ax.scatter(X[:,0], X[:,1], y.ravel(), color="black") # scatter plot of training data

ax.set_yticks(range(55,76,5)) # sets y-ticks

ax.set_xlabel("SAT-Math"); ax.set_ylabel("SAT-English"); ax.set_zlabel(target)

ax.view_init(azim=-130, elev=24) # camera position

plt.show()

It is depicted in Figure 5.3 a). For the two-dimensional case, we evidently do not have

a)
SAT-Math

68
70

72
74

76
78

SAT-English
55

60
65

70
75

GPA

3.2

3.4

3.6

3.8

b)
SAT-Math

68
70

72
74

76
78

SAT-English
55

60
65

70
75

GPA

3.2

3.4

3.6

3.8

Figure 5.3. a) Scatter plot of the SAT score data in Example 5.8. b) Scatter plot with the
regression plane. The red dots are the model values lying in the plane, the residuals are
given by the distances to the black-dotted data values with corresponding SAT values.

a regression line, but a regression plane instead. Given the observational data X and y, a
possible way to plot this plane is by a Numpy meshgrid which is spanned by the minimum
and maximum values of the two features 𝑥1 = X[:,0] and 𝑥2 = X[:,1] and serves as test
data predicting the target values by the model. The plane is then plotted by the function
plot_trisurf:
%matplotlib notebook

import matplotlib.pyplot as plt

import mpl_toolkits.mplot3d

Regression plane with min/max of training data:

mg = np.meshgrid(np.r_[X[:,0].min(), X[:,0].max()], np.r_[X[:,1].min(), X[:,1].max()])

zz = model.predict(np.c_[mg[0].ravel(),mg[1].ravel()]).ravel() # predict the training data

-- 3D scatter plot:

ax = plt.axes(projection="3d")

ax.scatter(X[:,0], X[:,1], y.ravel(), color="black") # scatter plot of training data

ax.scatter(X[:,0], X[:,1], y_pred, color="red") # scatter plot of predictions

ax.plot_trisurf(mg[0].ravel(), mg[1].ravel(), zz, linewidth=0, alpha=0.3) # regression plane

ax.set_yticks(range(55,76,5)) # set y-ticks

ax.set_xlabel("SAT-Math"); ax.set_ylabel("SAT-English"); ax.set_zlabel(target)

64 Andreas de Vries: Machine Learning

ax.view_init(azim=-130, elev=24) # camera position

plt.show()

The result of this program is shown in Figure 5.3 b). Here the red dots are the model values
lying in the plane, the residuals are given by the distances of them to their corresponding
black-dotted data values. Compare this plot with the plots of the regression lines for the

58 61 64 67 70 73 76

3.2

3.4

3.6

3.8

GPA vs. SAT-English
 =1.566, =0.0284

68 70 72 74 76 78

3.2

3.4

3.6

3.8

GPA vs. SAT-Math
 =3.554, =0.0001

Figure 5.4. Scatter plots GPA versus individual SAT scores and the corresponding
regression lines.

two one-dimensional models in Figure5.4. Note that the SAT-Math regression line has a
very small slope 𝜃1 = 10−4 such that the intercept 𝜃0 = 3.544 is very close to the mean of
the GPA, 𝑦̄ = 3.563̄. As we saw in Example 5.8 above, the coefficients of determination
ranks the models according to their goodness of fit in favor to the two-dimensional model.
By the left plot in Figure 5.4 we see another argument in favor of the two-dimensional
model: Several SAT-English scores occur more than once, i.e., 𝑥2 = 76 occurs three times,
and 𝑥2 = 66 as well as 𝑥2 = 71 each double. However, they all have different GPA values.
From the explanatory point of view of the SAT-English score model this phenomenon
remains completely obscure. Only in the two-dimensionsal model the influence of the
SAT-Math scores become apparent. □

5.4 Nonlinear regression
Often there are problems for which more complex models have to be applied than the ones
we have got to know so far. This is the case, for example, when observed data values show
a causal relationship, but this relationship is not linear. Actually, this is even the rule, since
reality is mostly nonlinear and can at best be approximated by a linear model. In scienceOccam’s razor

the accuracy of a model must always be weighed against its ability to explain the essential
influences of the phenomena under consideration, cf. Occam’s razor cf. Section 2.4.

However, if a nonlinear functional relationship between observed data is sought, we
should apply nonlinear regression.10 Here the fitted model function 𝑓 : R𝑛 × R𝑘 → R,

𝑦 = 𝑓 (𝒙, 𝜽) (5.18)

is nonlinear with respect to the independent variables 𝒙. Unfortunately, we are confronted
with a whole series of problems in a nonlinear regression analysis. It is often difficultNonlinear

problems do
not always
have a unique
solution,
sometimes
none at all,
sometimes
several ones

just to identify the appropriate type of function. Here, insights from the factual logical
context of the data should be incorporated, and a certain amount of experience and
intuition is also helpful. For example, nonlinear regression models are often based on
entire scientific theories, but sometimes a quick glance at the plot of the data is enough.11
Second, nonlinear regressions are often very intensive computationally. In unfavorable

10Backhaus et al. (2015):§1.
11Sen and Srivastava (1990):p. 298.

https://en.wikipedia.org/wiki/Occam's_razor

§5 Regression 65

cases, the computations then do not even lead to the best solution, or perhaps even to no
solution at all – either because the computational iterations do not converge, or because a
solution does not exist at all! Abstractly, nonlinear approaches, in contrast to linear ones,
bear the risk of having multiple local optima, of not finding the global optimum, or of not
having an optimum at all.

Often it is decisive when fitting nonlinear regression models is often the specification
of suitable initial values for the approximation of the parameters, so that the computational initial values

critical!methods provide a solution. However, this problem depends individually on the model
function 𝑓 , i.e., there is no general working procedure. There often only “fiddling” helps,
i.e. trial-and-error, usually supported by function plots.

In short, the whole thing is so complicated, that a nonlinear regression is possible
only for limited cases. Essentially, there are two viable approaches: (1) resolving the
nonlinearity by projecting it into higher dimensions, or (2) balancing. Scikit-Learn can 2 approaches

to nonlinear
regression in
Python

be used to implement the first approach. For the second approach, although no option is
provided in Scikit-Learn, it is provided in the Python library scipy. We will look at both
approaches in the following sections.

5.4.1 Resolving the nonlinearity with base functions
In Scikit-Learn, we can implement nonlinear regression if the function 𝑓 in (5.18) is a
linear combination of finitely many basis functions 𝑔1, . . . , 𝑔𝑘 : R𝑛 → R:

𝑓 (𝒙, 𝜽) = 𝜃1𝑔1(𝒙) + . . . + 𝜃𝑘𝑔𝑘 (𝒙) (5.19)

We can then project the nonlinearity of 𝑓 into a higher dimensional linear model — at
least with respect to the parameters 𝜽:12

Nonlinear in Linear in
𝑛 dimensions 𝑛 × 𝑘 dimensions

↓ ↑
𝑓 (𝒙, 𝜽) −→ 𝜃1𝑔1(𝒙) + . . . + 𝜃𝑘𝑔𝑘 (𝒙)

Such models are called parameter-linear, cf. Equation (5.6) above. How can such
a linearization look like? An example is the polynomial regression, i.e., a nonlinear
regression with the model function

𝑓 (𝑥, 𝜽) = 𝜃0 + 𝜃1𝑥 + 𝜃2𝑥
2 + . . . + 𝜃𝑘𝑥𝑘 , (5.20)

a polynomial of degree 𝑘 . Since this model is already linear with respect to the (𝑘 + 1)
model parameters 𝜃𝑖 (i.e. they are never multiplied or divided by each other), we can
express the basis functions

𝑔0(𝑥) = 1, 𝑔1(𝑥) = 𝑥, 𝑔2(𝑥) = 𝑥2, . . . , 𝑔𝑘 (𝑥) = 𝑥𝑘 (5.21)

by the function 𝑓 as in (5.19) – although supplemented by the constant term 𝜃0𝑔0(𝑥). In projection with
PolynomialFea-

tures
Scikit-Learn this projection is implementable with the transformation PolynomialFeatures

of the package sklearn.preprocessing. It maps each value 𝑥 of a column vector into a
row with its individual powers 𝑥0, 𝑥1, ..., 𝑥𝑘 , i.e.,

©­­«
𝑥1
...
𝑥𝑛

ª®®¬ −→
©­­«

1 𝑥1 𝑥2
1 · · · 𝑥𝑘1

...
...

1 𝑥𝑛 𝑥2
𝑛 · · · 𝑥𝑘𝑛

ª®®¬ (5.22)

To do this, let us consider the instructions:
12VanderPlas (2018):§5.6.2.

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PolynomialFeatures.html
https://scikit-learn.org/stable/modules/classes.html#module-sklearn.preprocessing

66 Andreas de Vries: Machine Learning

import numpy as np

from sklearn.preprocessing import PolynomialFeatures

X = np.c_[[2,3]]

poly = PolynomialFeatures(3)

X_trans = poly.fit_transform(X)

print(X_trans)

They result in the output:

[[1. 2. 4. 8.]

[1. 3. 9. 27.]]

With the option include_bias=False one can exclude the constant terms 𝑥0 = 1:

X = np.c_[[2,3,4]]

poly = PolynomialFeatures(3, include_bias=False)

X_trans = poly.fit_transform(X)

print(X_trans)

Thus we obtain:

[[2. 4. 8.]

[3. 9. 27.]

[4. 16. 64.]]

The success of such an approach depends crucially on the appropriate choice of the basis
functions. For possibilities and limitations, consider the following example of a nonlinear
polynomial of degree 7 as a model function, which is analyzed as a linear 7-dimensional
regression model.

%matplotlib inline

import numpy as np

from sklearn.preprocessing import PolynomialFeatures

from sklearn.linear_model import LinearRegression

import matplotlib.pyplot as plt

-- 0. Simulate observational data: --

num = 50 # number of observations

X = np.c_[np.linspace(0, 10, num)]

y = np.sin(X.ravel()) + 0.1*np.random.RandomState(1).randn(num)

#plt.scatter(X,y)

-- 1. Nonlinear model with base polynomial of degree 7: --

poly = PolynomialFeatures(7)

X_trans = poly.fit_transform(X)

model = LinearRegression()

model = model.fit(X_trans, y)

y_pred = model.predict(X_trans)

print("score=",model.score(X_trans, y))

#-- 2. Plot data points and regression curve: --

§5 Regression 67

plt.scatter(X, y)

plt.plot(X, y_pred) # predictions in traing data

plt.show()

Comparison of the simulated training data plotted in a cloud of points with the modeled
regression curve in Figure 5.5 shows that a 7th degree polynomial models the data quite
well.

0 2 4 6 8 10

1.0

0.5

0.0

0.5

1.0

Figure 5.5. parameter-linear model for nonlinear training data

But isn’t there something wrong? The data for 𝑦 are simulated as a sinusoid with random
disturbance values. Also on the graph we intuitively expect the data to continue periodi-
cally. A polynomial, however, can never be periodic! For example, if we were to use this problem case:

unsuitable ba-
sis functionsmodel to predict data whose 𝑥 values do not lie in the training interval [0, 10], we would

experience a great disappointment:
X_curve = np.c_[np.linspace(0, 11.5, 1000)]

X_trans = poly.fit_transform(X_curve)

y_curve = model.predict(X_trans)

plt.scatter(X, y)

plt.plot(X_curve, y_curve)

gives the plot in Figure 5.6. Thus, as good as the regression model is on the training

0 2 4 6 8 10 12

1

0

1

2

3

Figure 5.6. parameter-linear model for nonlinear training data

interval, so useless it is outside of it. We therefore have not found out the “true” character
of the functional relation 𝑦 = 𝑓 (𝑥), but trained an overfit!

Choosing appropriate basis functions therefore requires that we “understand” the data.
For example, if we want to model periodic processes, we also need periodic basis functions.
Scikit-Learn does not provide for such functions. However, VanderPlas (2018) gives a In Scikit-Learn,

custom basis
functions
can be
implemented

nice example in Section 5.6.2 that can serve as a model for creating your own classes that
can be used to integrate arbitrary basis functions into a Scikit-Learn model.

By the way, for polynomial regression, the class SVR of the module sklearn.svm also
provides possible solutions.

https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html

68 Andreas de Vries: Machine Learning

5.4.2 Curve fitting
For the one-dimensional case there exists a simpler process is curve fitting for an arbitrary
function

𝑓 (𝑥, 𝜃1, 𝜃2, . . .) (5.23)
based on observed data 𝑥 and 𝑦. In Python it is provided by the method curve_fit(f,x,y)

of the module scipy.optimize. Here, the function 𝑓 must always contain the independentcurve_fit ex-
pects a certain
structure of the
function 𝑓 and
the data 𝑥, 𝑦

variable 𝑥 as the first parameter, just as in (5.23), and can be supplemented by the model
parameters 𝜃1, 𝜃2, . . . to be fitted as further parameters. In addition, the method curve_fit

expects the observed data of the independent variable 𝑥 and the dependent variable 𝑦 as
Numpy arrays (here scipy is unfortunately not as flexible as other modules like Scikit-Learn
or Statsmodels). A usual linear regression, for example, can programmed as:
import numpy as np

from scipy.optimize import curve_fit

def f(x,a,b): return a + b*x % the regression model

x = np.array([x_1, ... x_m])

y = np.array([y_1, ... y_m])

coefs, res = curve_fit(f, x, y)

Here the model parameters are denoted by 𝑎 and 𝑏 and represent the intercept and the
slope of the regression line. The method curve_fit is now called with the function as the
first input parameter and the observed data 𝑥 and 𝑦. Its result is a pair of arrays, the first
containing the values of the model parameters and the second their covariance matrix.
The calculation of these values is done using the method of least squares. It minimizes
the sum of squares of the residuals SSR as has been defined in Equation (5.4) above, and
is used to compute 𝑅2 in Equation (5.5).

Example 5.10. (Polynomial of degree 3) As a first test case, consider the data simulated
by the following statements for 𝑥 and 𝑦:
%matplotlib inline

import numpy as np

import matplotlib.pyplot as plt

x = np.array([-2,-1,0,1,2,3,4,5,6])

y = x**3 - 6 * x**2 + 3*x + 20

Thus, by construction, the values of 𝑦 here are functionally related to the values of 𝑥, viz.,

𝑦 = 𝑥3 − 6𝑥2 + 3𝑥 + 20, (5.24)

i.e., a polynial of degree three. But let us pretend we don’t know that and just see the data
points as a scatter plot as in Figure 5.7. There the function is not directly recognizable. If
we now want to apply to these data the model

𝑓 (𝑥) = 𝑎 + 𝑏𝑥 + 𝑐𝑥2 + 𝑑𝑥3 (5.25)

of a polynomial of degree three with the four model parameters 𝑎, 𝑏, 𝑐 and 𝑑, then we can
achieve this by the following instructions:
from scipy.optimize import curve_fit

def f(x,a,b,c,d): return a + b*x + c * x**2 + d * x**3

coefs, cov = curve_fit(f, x, y)

y_pred = f(x, *coefs) # model predictions

§5 Regression 69

2 1 0 1 2 3 4 5 6
20

10

0

10

20

30

40

Figure 5.7. Data of a cubic polynomial

The values 𝑦pred = 𝑓 (𝑋, 𝜽∗) predicted by the fitted model can be printed by the instruction,
print("Fitted coefficients:", [round(t,3) for t in coefs])

where we obtain

Fitted coefficients: [20.0, 3.0, -6.0, 1.0]

i.e., 𝑎 = 20, 𝑏 = 3, 𝑐 = −6 und 𝑑 = 1. Goal! The fact that this estimated model perfectly
represents the data is on the one hand visually plausibilized by plotting the regression

2 1 0 1 2 3 4 5 6
20

10

0

10

20

30

40

Figure 5.8. The data and the estimated regression curve

curve (Fig. 5.8). Evaluating the model with the coefficient of determination 𝑅2 and the
BIC, we let run the following instructions:
y_pred = f(x, *coefs)

from sklearn.metrics import r2_score

R2 = r2_score(y, y_pred)

def bic(e, k):

return np.log(np.var(e)) + k*np.log(len(e))

print("R2 =", f"{R2:.3%},", "BIC =", f"{bic(y - y_pred, len(coefs)):.0f}")

The output shows that the coefficient of determination 𝑅2 = 100%, and BIC = −56. □

5.4.3 Initial values of the fitting process
Calculating the model parameters for a nonlinear regression can lead to the serious prob-
lems, which are unknown from the linear regression. For instance, the fitted values can
produce a nonsensical result or no solution is found at all and the calculation is stopped.
(curve_fit stops its calculation after 800 iterations). Finding a nonsensical solution is
perhaps even worse than when the procedure stops, because often there is no warning
message and one easily does not notice the error. A nonsensical solution can often be

70 Andreas de Vries: Machine Learning

recognized visually by plotting the observed values and the estimated model in a diagram,
or by the fact that the coefficient of determination is greater than 1 or less than 0.

The reason for these effects is that the iterative estimation method depends very
sensitively on the initial values of the model parameters. The method curve_fit starts
with the value 1 for all model parameters by default. In some cases, this causes the
estimation procedure not to converge. The optional parameter p0 can be used to pass a list
of initial values to curve_fit when it is called, where they must appear in the same order
and number as in the regression function, e.g.,

def f(x,a,b,c): return a*x + b/x + c

curve_fit(f, x, y, p0=(0.5,2,100))

for the initial values 𝑎 = 0.5, 𝑏 = 2 und 𝑐 = 100.
Finding suitable initial values can be a difficult task and cannot be automated. “Un-

fortunately, there are no good rules for starting values.”13 Often you have to approach it
with trial and error. And sometimes even that, as well as a lot of patience does not help:
Maybe the regression model is unsuitable or even wrong!?

5.4.4 Case study: Kepler’s model of planetary orbits
As an example, we consider a problem from astronomy that Kepler solved on May 15,
1608, and published a year later in his work Harmonice Mundi. As we would put it today,

Planet Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune
Period [a] 0.2408 0.6152 1 1.8810 11.8626 29.4475 84.0168 164.7913
Semi-axis [AU] 0.3871 0.7233 1 1.5237 5.2033 9.5371 19.1912 30.0690

Table 5.1. Orbital data of the planets of the solar system: the major semimajor axis in
astronomical units (AU) and the orbital periods in years (a).
(Source: https://en.wikipedia.org/wiki/List_of_gravitationally_rounded_objects_of_the_Solar_System#Major_planets)

he succeeded in establishing a functional relationship between the orbital period 𝑇 and
the major semi-axis 𝑟 of the planets of the solar system. From the point of view of data
analysis, his problem can be conceived as the development of a nonlinear regression model
from given observational data. The data are listed in table 5.1 They are depicted as the

0 25 50 75 100 125 150
0

5

10

15

20

25

30

Figure 5.9. The semi-axes of the planets plotted against their orbital periods

scatter plot in Figure 5.9 by the following instructions:
%matplotlib inline

import numpy as np

import matplotlib.pyplot as plt

13Greene 2003, quoted from Backhaus et al. (2015:p. 31)

https://en.wikipedia.org/wiki/List_of_gravitationally_rounded_objects_of_the_Solar_System#Major_planets

§5 Regression 71

T = np.array([0.2408, 0.6152, 1, 1.8808, 11.8626, 29.4475, 84.0168, 164.7913])

r = np.array([0.3871, 0.7233, 1, 1.5237, 5.2034, 9.5371, 19.1913, 30.0690])

plt.scatter(T, r)

plt.show()

This visualization may suggest a connection through a continuous function. What function
might that be? Let us apply three different regression models to explore, a linear model
𝑓1, a quadratic model 𝑓2, and a power model 𝑓pow:

𝑓1(𝑡, 𝑎, 𝑏) = 𝑎 + 𝑏𝑡, 𝑓2(𝑡, 𝑎, 𝑏, 𝑐) = 𝑎 + 𝑏𝑡 + 𝑐𝑡2, 𝑓pow(𝑡, 𝑎) = 𝑡𝑎 . (5.26)

In Python, we can then estimate the model parameters 𝑎, 𝑏, . . . using the orbital data of
the planets as follows:
from scipy.optimize import curve_fit

def f1(t,a,b) : return a + b*t

def f2(t,a,b,c): return a + b*t + c*t**2

def f3(t,a) : return t**a

coefs1, cov1 = curve_fit(f1, T, r)

coefs2, cov2 = curve_fit(f2, T, r)

coefs3, cov3 = curve_fit(f3, T, r)

The computed parameter values then are printed by the following instructions:
print("Coefficients of the linear model", coefs1)

print("Coefficients of the square model", coefs2)

print("Coefficients of the power model", coefs3)

They read

linear model: 𝑎 = 1,79, 𝑏 = 0,18
square model: 𝑎 = 0,97, 𝑏 = 0,28 𝑐 = −6,26 · 10−4

power model: 𝑎 = 0,6667 ≈ 2
3 .

The instructions
plt.scatter(T, r)

plt.plot(T, f1(T, *coefs1), label="linear model")

plt.plot(T, f2(T, *coefs2), label="square model")

plt.plot(T, f3(T, *coefs3), label="power model")

plt.legend()

plt.show()

yield the diagram in Figure 5.10. You can see at a glance that the two nonlinear models

0 25 50 75 100 125 150
0

5

10

15

20

25

30
linear model
square model
power model

Figure 5.10. Orbital data of the planets and the three regression models

reproduce the concave curve much better than the linear one. Which one is better, however,
is not immediately obvious. Only a comparison of the corresponding coefficients of
determination and the BICs provides clarity:

72 Andreas de Vries: Machine Learning

3. Model evaluation

3.1 Coefficients of determination:

from sklearn.metrics import r2_score

R2_1 = r2_score(y, f1(X, *coefs1))

R2_2 = r2_score(y, f2(X, *coefs2))

R2_3 = r2_score(y, f3(X, *coefs3))

print("Coefficients of determination")

print(" linear:", f"{R2_1:.3%},", "\tsquare:", f"{R2_2:.3%},", "\tpower: ", f"{R2_3:.3%}")

3.2 BICs:

def bic(e, k):

return np.log(np.var(e)) + k*np.log(len(e))

print(

" BIC1 =", f"{bic(y - f1(X, *coefs1), len(coefs1)):.1f},",

"\t\tBIC2 =", f"{bic(y - f2(X, *coefs2), len(coefs2)):.1f},",

"\t\tBIC3 =", f"{bic(y - f3(X, *coefs3), len(coefs3)):.1f}"

)

They have the following values, in percent and rounded to three decimal places:

𝑅2
1 = 97,636%, 𝑅2

2 = 99,618%, 𝑅2
3 = 100%. (5.27)

as well as
BIC1 = 5.0, BIC2 = 5.3, BIC3 = −11.9, (5.28)

respectively. By both scorings, especially by the BIC, the power model therefore is by
far the most suitable! We can also confirm this visually by plotting the three models in a
log-log scale:
plt.scatter(T, r)

plt.plot(T, f1(T, *coefs1), label="lineares Modell")

plt.plot(T, f2(T, *coefs2), label="quadratisch Modell")

plt.plot(T, f3(T, *coefs3), label="Potenzmodell")

plt.legend()

plt.xscale("log")

plt.yscale("log")

plt.show()

100 101 102

100

101

linear model
square model
power model

Figure 5.11. The three regression models in log-log scale

In this scale it can be clearly seen that the power model has a linear curve progression
and especially the semi-axis values of the three inner planets Mercury, Venus and Earth
are modeled completely wrong by the other two models. The power model is thus very
accurately actuated on the basis of the observational data and delivers the relations

𝑟 = 𝑇2/3 ⇐⇒ 𝑟3 = 𝑇2 ⇐⇒ 𝑟3

𝑇2 = 1. (5.29)

§5 Regression 73

The last equation is Kepler’s third law in the units of the Earth’s orbit (𝑟♁ = 𝑇♁ = 1).
Kepler achieved the derivation of his law incomparably in a much more difficult way than
we can do it today: He needed a whole decade for this derivation. At that time, however,
the concept of function did not exist at all, and Gauss invented his method of least squares
almost 200 years later. Well, and he didn’t have Python either. So what seems to be a
short example of a regression model based on observationaldata in fact was a scientific
masterpiece and made history. About 80 years later Newton designed his groundbreaking
theory of gravitation on the basis of Kepler’s model, and Einstein explained a tiny error
of the model for the orbit of the inner planet Mercury, the “perihelion motion”, with his
general theory of relativity more than 300 years later. By the way, in Kepler’s lifetime the
two outer planets Uranus and Neptune were not yet known.

Is the found model overfitted? Having derived a suitable model, a serious question
remains open: Is the model overfitted? Is it too much adopted to the training data at hand
and does not generalize, as in Figure 5.6 above? Occam’s razor gives a clear answer:
No! The power model predicts the values almost perfectly, but it only requires a single
parameter: It seems as simple as possible, but as complex as necessary. This is clearly
reflected in the low BIC value.

5.4.5 Confidence intervals of fitted models
Fitting the parameters 𝜃𝑖 of a regression model can also be viewed as estimating for the
unknown “true” values of the parameters. This is because the result provides the best
estimate for the unknown parameters using the observed data. In statistics, this is referred
to as parameter estimation using a sample.

A confidence interval indicates the range in which, with a certain probability, the “true” confidence
interval and
confidence
level

value of a random value (more precisely, a random variable) lies around a sample value.
This probability is called confidence level14 and is often denoted as 1 − 𝛼, where 𝛼 is the
probability of error. Confidence intervals are thus another way to measure the goodness

0 2 4 6 8 10
1.5

1.0

0.5

0.0

0.5

1.0

1.5
1- =0.9

0 2 4 6 8 10
1.5

1.0

0.5

0.0

0.5

1.0

1.5
1- =0.99

Figure 5.12. Confidence intervals around a regression curve to the confidence levels
1 − 𝛼 = 0.9 and 0.99. The larger the confidence level 1 − 𝛼, the wider the confidence
interval.

of fit of a regression for given data points. We can visualize them well by plotting them as
an error band around a regression curve, as shown in Figure 5.12 for different confidence
levels.

In Python, suitable functions for this purpose are the Numpy function quantile and
the plot function fill_between. Passing to quantile a matrix sims and a list [alpha,

14Backhaus et al. (2016):§1.2.4.2.

74 Andreas de Vries: Machine Learning

1-alpha], it returns the two quantiles 𝑞 = 𝛼 and 𝑞 = 1 − 𝛼. With the optional parameter
axis=0, each row of the matrix preds is considered as a single record:

x = np.linspace(0,10,100)

y_pred = np.sin(x) # supposed regression curve

y = np.random.normal(y_pred,0.2) # simulated data

sims = np.array([np.random.normal(y_pred,0.2) for j in range(1000)])

alpha = 0.01 # probability of error

u, l = np.quantile(sims, [alpha, 1 - alpha], axis=0)

plt.scatter(x,y)

plt.plot(x,y_pred, color="black")

plt.fill_between(x, l, u, color="lightblue", alpha=0.5)

Here y_pred contains the values of the assumed or determined regression curve and
y simulated “observed” data scattered around the 𝑦 values with a standard deviation
𝜎 = 0.2. The matrix sims contains 100 such random simulations. With np.quantile

the quantiles 𝑞 = 𝛼 and 𝑞 = 1 − 𝛼 are stored in the variables u and l and plotted in
the plot function plt.fill_between as upper and lower bounds. (Note that the parameter
alpha in plot functions represents the opacity of the object to be plotted!) In a regression
analysis with curve_fit, the fitted model function must of course be used for the values of
y_pred instead of the function np.sin defined statically here, and for sigma the determined
standard deviation of the data series y and y_pred, instead of the constant 0.2:

y_pred = f(x,*params)

sigma = np.std(y - y_pred)

5.5 Problems
Problem 5.1. Under https://www.itl.nist.gov/div898/strd/nls/nls_main.shtml, the
NIST provides some challenge datasets for testing robustness and reliability of statistical
software with varying levels of difficulty. The “Thurber problem” is classified to be of
higher level of difficulty. The data involve semiconductor electron mobility, where the
independent variable 𝑥 is the natural logarithm of the density and the target variable 𝑦 a
measure of electron mobility. The data are available under https://www.itl.nist.gov/

3 2 1 0 1 2

200

400

600

800

1000

1200

1400

Figure 5.13. Semiconductor electron mobility 𝑦 versus the log electron density 𝑥.

div898/strd/nls/data/thurber.shtml, or in Moodle. Test whether Python’s curve_fit

https://www.itl.nist.gov/div898/strd/nls/nls_main.shtml
https://www.nist.gov/
https://www.itl.nist.gov/div898/strd/nls/data/thurber.shtml
https://www.itl.nist.gov/div898/strd/nls/data/thurber.shtml

§5 Regression 75

function fits the model
𝑓 (𝑥, 𝜽) = 𝜃0 + 𝜃1𝑥 + 𝜃2𝑥

2 + 𝜃3𝑥
3

1 + 𝜃4𝑥 + 𝜃5𝑥2 + 𝜃6𝑥3

correctly, with initial values (1000, 1000, 400, 40, 1, 0.5, 0.05). Plot the regression curve
along with a scatter plot of the data. Evaluate goodness of fit of the model.

Problem 5.2. 15 The marketing management of a company wants to find out what the
relationship is between advertising expenditure and the sales volumes of a particular
product. To do this, it randomly allocates different advertising budgets to 15 different
sales areas and records the respective sales volumes at the end of the quarter, see table
5.2. Estimate the parameters of the following four regression models for these data. Here,

Sales area 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Advertizing expenses 22 8 14 26 12 2 10 24 6 30 16 20 18 4 28
Sales volume 264.9 176.1 222.7 269.3 194.5 101.7 187.9 275.3 148.4 308.3 241.0 265.9 243.4 129.3 288.6

Table 5.2. Data for studying the effect of advertising. Advertising expenditures are given
in 1000 €, sales volumes in 1000 kg.

advertising spend should represent the independent variable. Also, use the initial values
of the parameters where indicated.

Model Function Initial values
linear model: 𝑓 (𝑥) = 𝑎 + 𝑏𝑥 –
square root model: 𝑓 (𝑥) = 𝑎 + 𝑏√𝑥 –
power model: 𝑓 (𝑥) = 𝑎 + 𝑏𝑡𝑐 𝑎 = 1, 𝑏 = 1, 𝑐 = 0.5
exponential model: 𝑓 (𝑥) = 𝑎 + 𝑏 e𝑐𝑥 𝑎 = 1, 𝑏 = −1, 𝑐 = 0.05

Evaluate the four estimated models based on their goodness of fit. So which model
explains best the relationship between advertising spend and sales success?

15Backhaus et al. (2015):S. 27ff.

6
Data analysis with Python

Overview
6.1 Parametric statistical models in Python . 76

6.1.1 Generalized linear models . 77
6.1.2 Choice of the appropriate model class 78

6.2 Principal component analysis . 79
6.2.1 A case study for principal component analysis 81
6.2.2 Evaluating of predictions . 86

6.3 The pipeline: automating data analysis . 86

6.1 Parametric statistical models in Python

An overview of common models and associated Python classes in Python is given in Table
6.1.

Model Class (“Estimator”) Module
linear regression LinearRegression() sklearn.linear_model

nonlinear regression SVR(kernel="rbf"), curve_fit sklearn.svm, scipy.optimize
regression of time series SARIMAX((𝑝, 𝑑, 𝑞) × (𝑃, 𝐷,𝑄)𝑠) statsmodels.tsa.statespace.sarimax

Classification
logistic regression LogisticRegression() sklearn.linear_model

support vector machines LinearSVC(), SVC() sklearn.svm

naive Bayes Classifier GaussianNB() sklearn.naive_bayes

Clustering MeanShift() sklearn.cluster

Louvain methode best_partition() community

neuronal networks Sequential(), Model() keras.layers, keras.models
dimension reduction
principal component analysis PCA() sklearn.decomposition

factor analysis FactorAnalysis() sklearn.decomposition

lineare discriminant analysis LinearDiscriminantAnalysis() sklearn.discriminant_analysis

quadratic discriminant analysis QuadraticDiscriminantAnalysis() sklearn.discriminant_analysis

Table 6.1. Common models for data analysis in Python.

76

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html
https://scikit-learn.org/stable/modules/classes.html#module-sklearn.linear_model
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html
https://docs.scipy.org/doc/scipy-0.18.1/reference/generated/scipy.optimize.curve_fit.html#scipy.optimize.curve_fit
https://scikit-learn.org/stable/modules/classes.html#module-sklearn.svm
https://docs.scipy.org/doc/scipy-0.18.1/reference/optimize.html
https://www.statsmodels.org/stable/generated/statsmodels.tsa.statespace.sarimax.SARIMAX.html
https://www.statsmodels.org/stable/statespace.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/classes.html#module-sklearn.linear_model
https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
https://scikit-learn.org/stable/modules/classes.html#module-sklearn.svm
https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html
https://scikit-learn.org/stable/modules/classes.html#module-sklearn.naive_bayes
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.MeanShift.html
https://scikit-learn.org/stable/modules/clustering.html
https://python-louvain.readthedocs.io/en/latest/api.html
https://python-louvain.readthedocs.io/en/latest/api.html
https://keras.io/models/sequential/
https://keras.io/models/model/
https://keras.io/layers/about-keras-layers/
https://keras.io/models/about-keras-models/
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
https://scikit-learn.org/stable/modules/classes.html#module-sklearn.svm
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.FactorAnalysis.html
https://scikit-learn.org/stable/modules/classes.html#module-sklearn.svm
https://scikit-learn.org/stable/modules/generated/sklearn.discriminant_analysis.LinearDiscriminantAnalysis.html
https://scikit-learn.org/stable/modules/classes.html#module-sklearn.discriminant_analysis
https://scikit-learn.org/stable/modules/generated/sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis.html
https://scikit-learn.org/stable/modules/classes.html#module-sklearn.discriminant_analysis

§6 Data analysis with Python 77

6.1.1 Generalized linear models
A generalized linear model (GLM)1 is a model where the target variable 𝑦 is a linear
combination of the features 𝒙 = (𝑥1, . . . , 𝑥𝑛), transformed by an invertible function
ℎ : R→ R:

𝑓 (𝒙, 𝜽) = ℎ (𝜃0 + 𝜃1𝑥1 + . . . + 𝜃𝑛𝑥𝑛). (6.1)

The function ℎ is the response function of the model, its inverse ℎ−1 is called link function.
Generalized linear models allow response variables that have arbitrary distributions, rather
than simply normal distributions. GLM’s especially include the distributions listed in Table
6.2. Regression models such as linear regression, but also classifications such as logistic

Distribution Target Domain Response Function Unit Deviance 𝒅(𝒚, 𝒚̂)
Normal 𝑦 ∈ (−∞,∞) ℎ(𝑥) = 𝑥 (𝑦 − 𝑦̂)2

Bernoulli 𝑦 ∈ {0, 1} ℎ(𝑥) = 1
1 + e−𝑥

2(𝑦 ln 𝑦
𝑦̂ + (1 − 𝑦) ln 1−𝑦

1−𝑦̂)

Poisson 𝑦 ∈ {0, 1, 2, . . .} ℎ(𝑥) = e𝑥 2 (𝑦 ln 𝑦
𝑦̂ − 𝑦 + 𝑦̂)

Sources: https://en.wikipedia.org/wiki/Generalized_linear_model, https://bookdown.org/egarpor/PM-UC3M/glm-model.html, https://scikit-learn.

org/stable/modules/linear_model.html#generalized-linear-models, https://scikit-learn.org/stable/modules/model_evaluation.html#log-loss

Table 6.2. Some generalized linear models (6.1). Here 𝑦̂ = 𝑓 (𝒙, 𝜽).

regression or so-called support vector machines (SVM) are contained in this class. To
score a fitted model, a measure called deviance is applied. It is defined for generalized
linear models by the following equation:2

𝐷 (𝒚, 𝒚̂) =
𝑚∑︁
𝑖=1

𝑑 (𝑦𝑖, 𝑦̂𝑖) (6.2)

where 𝑑 (𝑦, 𝑦̂) denotes the unit deviance. Some unit deviances are given in Table 6.2. In
the Python module scikit-learn.linear_models the vector (𝜃1, . . . , 𝜃𝑛) is denoted by
coef_, the intercept 𝜃0 by intercept_. The models in scikit-learn.linear_models differ
in the distance function

dist
(
𝒚, 𝑓 (𝑿, 𝜽)) = 𝐷 (

𝒚, 𝑓 (𝑿, 𝜽)) + 𝑟 (𝜽)
where 𝑟 : R𝑘 → [0,∞) is a “penalty function” specified for each model, also called reg-
ularization function. From the geometrical point of view, the distance function measures
the geometric distance between the 𝑚 model values 𝑓 (𝑿, 𝜽) of the scatter points and the
𝑚 target values 𝒚 of the sample. By a model fit, this function is minimized. The most
common models are listed in Table 6.2. They are implemented in Scikit-learn as follows:3

• LinearRegression: Assuming a normal distribution for 𝑦, we obtain from the first
row in Table 6.2 the unit deviance and thus the deviance 𝐷 by Equation (6.2). With
a penalty function 𝑟 (𝜽) = 0 we then have the distance function

dist
(
𝒚, 𝑓 (𝑿, 𝜽)) = |𝒚 − 𝑓 (𝑿, 𝜽) |2, (6.3)

i.e., simply by mean squares. This is the RSS from usual linear regression, cf. (5.4).

1https://scikit-learn.org/stable/modules/linear_model.html#generalized-linear-models

2https://bookdown.org/egarpor/PM-UC3M/glm-deviance.html

3cf. https://scikit-learn.org/stable/modules/linear_model.html

https://en.wikipedia.org/wiki/Generalized_linear_model
https://bookdown.org/egarpor/PM-UC3M/glm-model.html
https://scikit-learn.org/stable/modules/linear_model.html#generalized-linear-models
https://scikit-learn.org/stable/modules/linear_model.html#generalized-linear-models
https://scikit-learn.org/stable/modules/model_evaluation.html#log-loss
https://scikit-learn.org/stable/modules/linear_model.html
https://scikit-learn.org/stable/modules/linear_model.html
https://scikit-learn.org/stable/modules/linear_model.html
https://scikit-learn.org/stable/modules/linear_model.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html
https://scikit-learn.org/stable/modules/linear_model.html#generalized-linear-models
https://bookdown.org/egarpor/PM-UC3M/glm-deviance.html
https://scikit-learn.org/stable/modules/linear_model.html

78 Andreas de Vries: Machine Learning

• Ridge(alpha=𝛼), often called “L2”: The distance is given by

dist
(
𝒚, 𝑓 (𝑿, 𝜽)) = |𝒚 − 𝑓 (𝑿, 𝜽) |2 + 𝛼 |𝜽 |2 (6.4)

by mean squares with regularization factor 𝛼 on the magnitude of the parameter 𝜽 .
The regularization factor prevents a pathological build-up of the parameter values.

• Lasso(alpha=𝛼), often called “L1”. Here the distance function is defined by

dist
(
𝒚, 𝑓 (𝑿, 𝜽)) = 1

2𝑚
|𝒚 − 𝑓 (𝑿, 𝜽) |2 + 𝛼 |𝜽 |, (6.5)

similar to Ridge. However, it is more suitable for features with many zero values.4

• LogisticRegression: Although a linear classification model, logistic regression is
a generalized linear model with Bernoulli distribution (binary values for 𝑦). For the
default parameter value penalty=’l2’ with 𝑟 (𝜽) = 1

2 |𝜽 |2 the distance is

dist
(
𝒚, 𝑓 (𝑿, 𝜽)) = −𝑦 ln ℎ(𝑿𝜽) − (1 − 𝑦) ln ℎ(𝑿𝜽) + 1

2 |𝜽 |2
between the data values and the model values is minimized.5 The deviance is derived
from the second row of Table 6.2. (Here the binary character of 𝑦 is exploited since
for 𝑦 = 0 both summands in the unit deviance vanish.)

In Scikit-learn there are also implemented several SVM’s, the most common are the
following:6

• LinearSVC: linear support vector classification.

• SVC: nonlinear support vector classification.

Moreover, the following naive Bayes classifiers are implemented:7
• GaussianNB: Gaussian distribution (continuous target values)

• BernoulliNB: multivariate Bernoulli distribution (only binary target values)

• MultinomialNB: multinomial models (several discrete target values)

• ComplementNB: Complement naive Bayes classifier (similar to MultinomialNB, appro-
priate for very ununiformly distributed data)

6.1.2 Choice of the appropriate model class
Often the most difficult step in solving a problem in machine learning is to find the
appropriate model. This is not only due to the large selection from the “zoo” of models
in Scikit-Learn, but rather to identify the exact problem behind it. Is it a classification
problem, or rather a clustering problem? Is it possible to apply dimensionality reduction?

In the Scikit-Learn tutorial, the decision tree shown in Figure 6.1 is given as a rough
guide to action. For us it is not relevant to the last detail, because we can only give
an introduction here in this lecture notes and cannot go in depth that far. Nevertheless,
it can serve us well as a first orientation framework – and as a reference for further
specializations. Above all, it is a good guidance to find the actual problem class to work
on: Is it a regression, a classification, a clustering, or a dimension reduction?

4cf. https://scikit-learn.org/stable/auto_examples/applications/plot_tomography_l1_

reconstruction.html

5https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression

6cf. https://scikit-learn.org/stable/modules/svm.html
7Cf. https://scikit-learn.org/stable/modules/classes.html#module-sklearn.naive_bayes

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Ridge.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Lasso.html
https://scikit-learn.org/stable/auto_examples/applications/plot_tomography_l1_reconstruction.html
https://scikit-learn.org/stable/auto_examples/applications/plot_tomography_l1_reconstruction.html
https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
https://scikit-learn.org/stable/modules/svm.html
https://scikit-learn.org/stable/modules/classes.html#module-sklearn.naive_bayes

§6 Data analysis with Python 79

Figure 6.1. Decision tree to choose an apprriate model. Quelle: https://scikit-learn.
org/stable/tutorial/machine_learning_map/

6.2 Principal component analysis
The idea of principal component analysis (PCA) is to summarise the information of a
dataset into its principal components. These components are linear combinations of the
variables in their most “interesting” direction. Here “interesting” means the direction of directions of

most variancemost variance. This is similar to a linear regression but instead of projecting the results
onto a line that uses 𝑥 to capture as much information as possible about 𝑦, we are using both
variables trying to capture as much information as possible in the 𝑥 and the 𝑦 direction
that has the most variance. This difference between the variable loadings of a principal

Principal component line Regression line

perpendicular to the
component line

perpendicular
to the 𝑥 axis

𝑥1

𝑥2

𝑥

𝑦

Figure 6.2. The subtle difference between the notions of distance for PCA and regression.

component line and the variable weights of a regression line, due to the different notions
of distance, is sketched in Figure 6.2.

Now, whereas the differences between the 𝑥-values and the regression line, the resid-
uals, contribute to the mean error, the differences between the 𝑥-values and the principal

https://scikit-learn.org/stable/tutorial/machine_learning_map/
https://scikit-learn.org/stable/tutorial/machine_learning_map/

80 Andreas de Vries: Machine Learning

component line determines the remaining values that contributes to the second principal
component. The then remaining value contribute to the third one, and so on. In principle,
there are as many principal components as features (as long as we have more observations
than features, i.e., 𝑚 > 𝑛). With the notations of Equations (3.2) and (5.2) each single
observation of the 𝑛 features is given by a row vector 𝑿𝑖 = (𝑥𝑖1, . . . , 𝑥𝑖𝑛), i.e., the 𝑗-th
principal component is given by8

𝑧𝑖 𝑗 = 𝜙1 𝑗 𝑥𝑖1 + 𝜙2 𝑗 𝑥𝑖2 + . . . + 𝜙𝑛 𝑗 𝑥𝑖𝑛 (𝑖 = 1, . . . , 𝑚, 𝑗 = 1, . . . , 𝑛) (6.6)

where the numbers 𝜙𝑖 𝑗 ∈ R, 𝑖 = 1, . . . , 𝑛, are called the loadings of the 𝑛 features with
respect to the principal component and solve the optimization

max
𝜙1𝑘 ,...,𝜙𝑛𝑘


𝑚∑︁
𝑖=1

(𝑛∑︁
𝑗=1

𝜙 𝑗 𝑘 𝑥𝑖 𝑗

)2 subject to
𝑛∑︁
𝑗=1

𝜙2
𝑗 𝑘 = 1 (6.7)

for each observation 𝑖 = 1, . . . , 𝑚. The values 𝑧𝑖𝑘 in Equation (6.6) are called scores of
the 𝑚 observations, and the vectors 𝒁 𝑗 = (𝑧1 𝑗 , . . . , 𝑧𝑚 𝑗)T are called score vectors. The
loading vector 𝝓 𝑗 = (𝜙1 𝑗 , . . . , 𝜙𝑛 𝑗) defines the direction of the 𝑗-th principal in feature
space along which the data vary the most, up to the principal components smaller than
𝑗 , all direction being orthogonal to each other.9 Once we successively have computed
the principal components, starting from 𝑘 = 1, then going to 𝑘 = 2, and so on, until we
reach 𝑘 = 𝐾 for some 𝐾 ≦ 𝑛, we can rewrite the loading vectors as a matrix and obtain the
following relation to the score vectors 𝒁𝑘 :

©­«
| |
𝒁1 · · · 𝒁𝐾
| |

ª®¬ =
©­­«

— 𝑿1 —
...

— 𝑿𝑚 —

ª®®¬ · ΦT with ΦT =
©­«

| |
𝝓1 · · · 𝝓𝐾
| |

ª®¬ (6.8)

where 𝑿 is the matrix in Equation (3.2). In Scikit-learn the matrix Φ is called “compo-
nents”,10 so we will refer to it as the component matrix, or load matrix. We can plot the
principal components pairwise against each other to view the data with respect to them.
Such a projection of the data on a pair of principal components, together with the posi-
tions of the feature vectors 𝑋𝑖, is called a biplot.11 Besides the observations themselves,biplot

the feature variables are drawn as arrows from the origin. The coordinates of each feature
with respect to the principal components are given by the respective row of the load matrix
Φ, or in Scikit-learn by one of the columns of the component matrix Φ. A biplot is given
below in the right-hand panel of Figure 6.3.

The property of the first principal component being the line in 𝑘-dimensional feature
space that is closest to the 𝑚 observations, as indicated in Figure 6.2, can be generalized.
For instance, the first two components of a data set span the plane that is closest to the
𝑚 observations. Moreover, the first three principal components of a data set span the
three-dimensional space (as a hyperplane of a higher-dimensional space for 𝑘 > 3) closest
to the 𝑚 observations, and so forth.12 Therefore, the main goal of PCA usually is not to
map the 𝑛 feature axes to 𝑛 principal component axes, but to find a lower dimensional

8James et al. (2013):p. 376.
9From a mathematical point of view, the 𝑛 loading vectors 𝝓1, . . . , 𝝓𝑛 are the ordered sequence of

eigenvectors of the 𝑛 × 𝑛 matrix 𝑿T𝑿, given the notation of (3.2), and the variances of the components are
its eigenvalues. (Footnote on James et al. (2013):p. 377)

10Géron (2017):pp. 213–214.
11James et al. (2013):p. 377.
12James et al. (2013):pp. 380–381.

§6 Data analysis with Python 81

representations of the observations that explain a good fraction of the variance. Therefore,
only the first few principal components should be regarded. The crucial question then is:
How much of the information in a given data set gets lost by projecting the observations
in the first few principal components?

There is no definite method or criterion to determine, how many principal components
are necessary such that “enough” information is projected onto them. However, a common scree plot

step to decide this question is to visualize the proportions of explained variances by a scree
plot.13

For a nice and humourous introduction to PCA see Harriet Mason’s post https:

//numbat.space/posts/pca/.
Before PCA can be performed, the feature variables should be centered to have mean

zero. Moreover, since the variables usually are individually scaled – one feature may be
in units of currency, another one may be in tons or kg – they should be scaled to standard
deviation.14 In Scikit-learn, scaling the data is conveniently done with the Transformer scaling data

StandardScaler of the module sklearn.preprocessing.

6.2.1 A case study for principal component analysis
The World Happiness Report is published annually by the United Nations. For 2021, e.g.,
it is available at https://worldhappiness.report/ed/2021/, Appendices & Data, Data for
Figure 2.1. In the report, the happiness-index is calculated for almost all nations of the
world as a key figure from various economic and social characteristic data such as social
benefits, life expectancy, degree of freedom or corruption. With the following sample
program we want to investigate the question of which of these characteristics have the
most significant influence on the satisfaction of a population based on the data.

First visualizations of the principal components

As a first step in data analysis it is common to visualize the underlying data. For this purpose
we first import the data as usual, before we perform the principal component analysis with
Scikit-learn. According to the discussion above, this will yield us the calculation of the
principal components as a matrix Φ, showing how the features contribute to the first few
principal components.
%matplotlib notebook

import matplotlib.pyplot as plt, numpy as np, pandas as pd, mpl_toolkits.mplot3d

from sklearn.preprocessing import StandardScaler # scales data to standard deviation

from sklearn.decomposition import PCA # principal component analysis

from sklearn.linear_model import LinearRegression # linear regression

1. Import data as a Pandas DataFrame and preprocess them for scikit-learn:

df = pd.read_csv("./datasets/happiness-report-2021.csv", sep='\t') # loads CSV to Pandas

features = ["Logged GDP per capita", "Social support", "Healthy life expectancy",

"Freedom to make life choices", "Perceptions of corruption"]

target = "Happiness" # dependent variable

X = np.c_[df[features]] # extracts feature values as a matrix

y = np.c_[df[target]] # extracts target values as a one-column matrix

2.1 Scaling the data

model1 = StandardScaler()

model1 = model1.fit(X)

13James et al. (2013):pp. 382–383.
14Géron (2017):p. 213; James et al. (2013):pp. 381–382.

https://numbat.space/posts/pca/
https://numbat.space/posts/pca/
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/classes.html#module-sklearn.preprocessing
https://worldhappiness.report/ed/2021/

82 Andreas de Vries: Machine Learning

Lo
gg

ed
 G

DP
 pe

r c
ap

ita
So

cia
l s

up
po

rt
He

alt
hy

 lif
e e

xp
ec

ta
nc

y

Fre
ed

om
 to

 m
ak

e l
ife

 ch
oic

es
Pe

rce
pt

ion
s o

f c
or

ru
pt

ion

PC 1

PC 2

PC 3

0.8

0.6

0.4

0.2

0.0

0.2

4 2 0 2 4
PC1 (62.1% expl.var)

2

1

0

1

2

3

4

PC
2

(1
8.

4%
 e

xp
l.v

ar
)

Logged GDP per capita (-0.517)

Perceptions of corruption (-0.803)

Freedom to make life choices (-0.815)

Social support (-0.485)

Healthy life expectancy (-0.513)

3 Principal Components explain [92.37%] of the variance

Figure 6.3. Left: Heatmap of the loads of the first three principal components with
respect to the features. Right: Biplot of the five features projected into the plane spanned
by the first two principal components.

X_scaled = model1.transform(X) # compute and store the scaled data

2.2 Principal component analysis of the feature data

model2 = PCA(3) # for example, three principal components ...

model2 = model2.fit(X_scaled, y)

X_trans = model2.transform(X_scaled) # compute and store the projected data

2.3 Print and plot the principal components as a heat map

print(model2.components_)

plt.figure(figsize=(7,4))

plt.imshow(model2.components_)

plt.colorbar()

plt.xticks(range(len(features)), features, rotation=60, ha="right")

yticks = [""] * len(model2.components_[:,0])

for i in range(len(yticks)):

yticks[i] = "PC " + str(i+1)

plt.yticks(range(len(yticks)), yticks)

plt.show()

3 Biplot:

from pca import pca

model = pca(n_components=3, verbose=0)

results = model.fit_transform(X_scaled, col_labels=features, row_labels=df['Country name'],

verbose=0)

fig, ax = model.biplot(

figsize=(10,5), PC=[0,1], alpha_transparency=0.7, SPE=True,

cmap="rainbow", color_arrow='black', verbose=0, label=None,

)

fig.show()

§6 Data analysis with Python 83

The variances – or in other words the correlations15 – of the individual characteristics on
the principal components are given by the matrix <

Φ =
©­«
−0.517 −0.485 −0.513 −0.386 0.293
−0.244 −0.340 −0.180 0.385 −0.803

0.238 −0.123 0.225 −0.815 −0.462

ª®¬ (6.9)

Each column yields the loading vector of the corresponding feature. The loadings can
be represented by a heat map as shown in Figure 6.3 on the left. The larger the absolute
amount of variance, the greater is the influence of the particular characteristic. Negative
amounts are negatively correlated with the principal component, but this has no deeper
meaning in principle since only the direction of the principal component is relevant. Figure
6.3 on the right depicts the happiness index of each country plotted against the first two
principal components. The biplot is generated by the library pca. Here the coordinates

0.0
0.2

0.4
0.6

0.8
1.0 0.0

0.2

0.4

0.6

0.8

1.0
0.0

0.2

0.4

0.6

0.8

1.0

PC1 (62.1% expl.var)

4
3

2
1

0
1

2
3

4

PC2 (18.4% expl.var)

2.0
1.5

1.0
0.5

0.0
0.5

1.0
1.5

2.0

PC
3

(1
1.

8%
 e

xp
l.v

ar
)

1.5
1.0
0.5

0.0

0.5

1.0

1.5

2.0

Logged GDP per capita (-0.517)

Perceptions of corruption (-0.803)
Freedom to make life choices (-0.815)

Social support (-0.485)

Healthy life expectancy (-0.513)

3 Principal Components explain [92.37%] of the variance

Figure 6.4. Biplot with the first three principal components.

of the five feature vectors with respect to the three principal components are given by the
columns of the component matrix Φ.

To get an intuition of the relationship of the principal components to the data and to
the feature vectors, as well as and to understand the underlying geometry, we could plot
a three-dimensional biplot (strictly speaking, a “triplot” instead) with the following code
snippet.

3.2 Three-dimensional biplot

fig, ax = model.biplot(

figsize=(14,7), PC=[0,1,2], d3=True, alpha_transparency=0.7,

cmap="rainbow", color_arrow='black', verbose=0, label=None, legend=False

)

ax.set_xlim(-4, 4)

15Backhaus et al. (2016):p. 394.

https://erdogant.github.io/pca/

84 Andreas de Vries: Machine Learning

ax.set_ylim(-2, 2)

ax.view_init(azim=-40, elev=36) # position of camera

fig.show()

This gives the plot in Figure 6.4.

Determining the number of components

Now we can tackle problem to determine the number of principal components to charac-
terize the data good enough. A first and not unusual step is to use some hints by regarding
the scree plot. For this purpose the following code snippet can be implemented:

model = PCA() # enable all possible principal components ...

model = model.fit(X_scaled,y)

print("Explained variance ratio:", model.explained_variance_ratio_)

plt.figure(figsize=(6,4))

pc_values = np.arange(model.n_components_) + 1

plt.plot(pc_values, model.explained_variance_ratio_, 'o-')

plt.title('Scree Plot')

plt.xlabel('Principal Component')

plt.ylabel('Explained Variance')

plt.xticks(pc_values)

plt.show()

This gives the plot in Figure 6.5. Since there are five features (and mopre than 140 data
points), the maximum number of principal components is five. The scree plot simply

1 2 3 4 5
Principal Component

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ex
pl

ai
ne

d
Va

ria
nc

e

Scree Plot

Figure 6.5. Scree plot of the possible five principal components. Its “elbow” may be
located at the second component.

plots the explained variance of each principal component, given by the model attribute
explained_variance_ratio. The scree plot does not show a definite “elbow”, but we
may located it at the second component. Therefore, two principal components may be
considered to be “enough” to explain the relevant feature combinations. Considering the
output of the program

Explained variance ratio: [0.6212864 0.18409387 0.11832235 0.0507004 0.02559698]

we conclude that the first two components explain 62.13+18.41= 80.54 % of the variances.

§6 Data analysis with Python 85

General overview with scatterplot matrices

A convenient way to give a visualized overview over multidimensional data is to use
a scatterplot matrix. Here every numerical variable is plotted against every other nu-
merical variable, arranged in a tabular form.16 In Python, scatterplot matrices can be
generated from a Pandas DataFrame by the Pandas function scatter_matrix in the mod-
ule pandas-plotting. Another possibility is the module plotly.express, which is more

0 5

−2

0

2

4

−2

−1

0

1

2

−2 0 2 4

0

5

−2 −1 0 1 2

3

4

5

6

7

Happiness

Total Explained Variance: 92.37 %

PC 1 PC 2 PC 3

PC
 1

PC
 2

PC
 3

Figure 6.6. Scatterplot matrix of the happiness indices of each country, plotted against
each pair of the first three principal components PC1, PC2, and PC3.

convenient for Numpy arrays as in Scikit-learn. If X_trans represents the observations
projected onto the space of the first three principal components, as done in step 2.2 above
by model2, we could depict the 3 · (3 − 1) = 6 plots by the following snippet:

import plotly.express as px

n_components = model2.n_components

total_var = model2.explained_variance_ratio_.sum() * 100

labels = {str(i): f"PC {i+1}" for i in range(n_components)}

labels['color'] = target

fig = px.scatter_matrix(

X_trans,

color=y.ravel(),

dimensions=range(n_components),

labels=labels,

title=f'Total Explained Variance: {total_var:.2f} %',

)

fig.update_traces(diagonal_visible=False)

fig.show()

16cf. Géron (2017):pp. 57–58; James et al. (2013):p. 50.

https://pandas.pydata.org/docs/reference/api/pandas.plotting.scatter_matrix.html
https://plotly.com/python/plotly-express/

86 Andreas de Vries: Machine Learning

Since the diagonal would give two-dimensional plots showing all observations on a straight
line, we suppress them with the option diagonal_visible=False. The result of this program
gives the scatterplot matrix in Figure 6.6.

6.2.2 Evaluating of predictions
Predictive models can predict target values. In Scikit-Learn each predictive model has
a method predict, which calculates the target values corresponding to the input feature
values X_test according to the model:

y_pred = model.predict(X_test)

To evaluate the predictions the method score can be applied, which yields a relevant key
figure measuring how well values calculated from the data X_test match the actual values
y_test.

print(model.score(X_test, y_test))

Thus, one should not use all available data as training data, but use a part of it as test data.
The method train_test_split is suitable for this purpose:

from sklearn.model_selection import train_test_split

Select randomly 30% of the data as test data (i.e., 70% training data):

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)

Other ways to evaluate forecasts are listed at https://scikit-learn.org/stable/modules/
model_evaluation.html.

6.3 The pipeline: automating data analysis
If we want to execute several models and data transformations one after the other, one can
use a so-called pipeline. A pipeline is a sequence of models with the methods fit and
transform, the last model of which requires only the fit method. It is used to automate
elaborate modeling processes and thus to run through entire modeling scenarios. For

(X, y) (X′, y′) (X′′, y′′) · · · (X (𝑘) , y(𝑘))

model 0 model 1 model 𝑘
fit transform fit transform fit

Figure 6.7. Principle of a pipeline in Scikit-learn

example, a pipeline may include a scaler, a principal component analysis, and a linear
regression model can be connected in series:
pipe = make_pipeline(StandardScaler(), PCA(2), GaussianNB())

In the steps attribute of the pipeline the models are listed, namely as 2-tuple (’name’,

model). E.g. you get the standard scaler and the principal component model with
pca = pipe.steps[0][1]

(i.e., start with index 0 and end with index 1). Since the last model of the pipeline contains
a method predict a prediction of the target values can be for further test data can be
created.

https://scikit-learn.org/stable/modules/model_evaluation.html
https://scikit-learn.org/stable/modules/model_evaluation.html
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html

§6 Data analysis with Python 87

y_pred = pipe.predict(X_test)

Example 6.1. (Principal component analysis and linear regression with pipeline) If we
want to perform a linear regression instead of a Gaussian naïve Bayesian classification as
in example 6.2, a simple replacement of the model in the pipeline is sufficient. However,
since a linear regression expects real values of the target variables, categorization of the
data as in step 3 in Example 6.2 should be omitted.
%matplotlib notebook

import matplotlib.pyplot as plt, numpy as np, pandas as pd, mpl_toolkits.mplot3d

from sklearn.model_selection import train_test_split # splits data into training and test data

from sklearn.pipeline import make_pipeline # makes a pipeline

from sklearn.preprocessing import StandardScaler # scales data to standard normal distribution

from sklearn.decomposition import PCA # principal component analysis

from sklearn.linear_model import LinearRegression # linear regression

1. Import data as a Pandas DataFrame and preprocess them for scikit-learn:

df = pd.read_csv("./datasets/happiness-report-2021.csv", sep='\t') # loads CSV file as a Pandas dataframe

features = ["Logged GDP per capita", "Social support", "Healthy life expectancy", "Freedom to make life choices",

"Perceptions of corruption"]

target = "Happiness" # dependent variable

X = np.c_[df[features]] # extracts feature values as a matrix

y = np.c_[df[target]] # extracts target values as a one-column matrix

2. Choose by random 30 % of data as test data, i.e., 70 % as training data:

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30)

3. Fit and predict with a pipeline of scaling, PCA, and linear regression:

pipe = make_pipeline(StandardScaler(), PCA(2), LinearRegression())

pipe.fit(X_train, y_train)

4. Print model score:

print("score (train values): ", f"{pipe.score(X_train, y_train):.2%}")

print("score (test values):",f"{pipe.score(X_test, y_test):.2%}")

5. Plot 3D scatter plot:

from mpl_toolkits.mplot3d import Axes3D

5.1. Choose PCA model from pipeline and project data onto the principal components:

X_scaled = pipe.steps[0][1].fit_transform(X) # scaled data

X_trans = pipe.steps[1][1].fit_transform(X_scaled) # Dimensionsreduzierung auf die Hauptkomponenten

y_pred = pipe.predict(X) # Vorhersagewerte der Pipeline ...

5.2. Plot 3D scatter diagram:

fig = plt.figure(figsize=(7,5))

ax = fig.add_subplot(111, projection="3d")

ax.scatter(X_trans[:,0], X_trans[:,1], y, marker="o", c='red', label='actual values')

ax.set_xlabel("PC 1"), ax.set_ylabel("PC 2"), ax.set_zlabel(target)

ax.view_init(azim=-60, elev=20) # position of camera

plt.tight_layout()

plt.show()

5.3. Plot regression plane witht min/max of the transformed data:

x0 = np.linspace(X_trans[:,0].min(), X_trans[:,0].max(), num=2)

x1 = np.linspace(X_trans[:,1].min(), X_trans[:,1].max(), num=2)

xx0, xx1 = np.meshgrid(x0,x1) # 2x2 - Gitter

X0, X1 = xx0.ravel(), xx1.ravel()

yy = pipe.steps[2][1].predict(np.c_[X0, X1]).ravel() # Prediction values in the regression plane

ax.plot_trisurf(X0, X1, yy, linewidth=0, alpha=0.3)

plt.tight_layout()

plt.show()

The resulting scatter plot is shown in Figure 6.8. On the right you can see the scatter plot
with the regression plane on which the values predicted with the linear regression (here
marked as x) lie. □

As discussed at the beginning, the pipeline mechanism can easily be used to change
concatenations of models. The following example demonstrates this possibility by re-
placing the linear regression with a Gaussian naive Bayes classifier. Here this is still

https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html

88 Andreas de Vries: Machine Learning

Hauptkomponente 1

2.5
2.0

1.5
1.0

0.5 Hauptkomponente 2

0.6
0.4

0.2
0.0

0.2
0.4

Ha
pp

in
es

s

3

4

5

6

7

tatsächliche Werte
Prognose

Hauptkomponente 1

2.5
2.0

1.5
1.0

0.5 Hauptkomponente 2

0.6
0.4

0.2
0.0

0.2
0.4

Ha
pp

in
es

s

2

3

4

5

6

7

8

Figure 6.8. Scatter plot of the projection on the two principal components of the actual
data and the values predicted after linear regression (example 6.1). The predicted values
are in the regression plane (right).

done manually, but of course we can easily imagine programs that mutually exchange this
mechanism for a whole list of models in an automated way, and thus in a sense allow
testing of whole chains of models.

Example 6.2. (Principal Component Analysis and Classification with Pipeline) In the
following program, a principal component analysis is performed followed by a pipelined
classification.
%matplotlib notebook

import matplotlib.pyplot as plt, numpy as np, pandas as pd, mpl_toolkits.mplot3d

from sklearn.model_selection import train_test_split # teilt Daten in Training und Test

from sklearn.preprocessing import KBinsDiscretizer # teilt stetige Werte in Kategorien

from sklearn.pipeline import make_pipeline # erstellt eine Pipeline

from sklearn.preprocessing import StandardScaler # normalverteilte Skala für alle Daten

from sklearn.decomposition import PCA # Hauptkomponentenanalyse

from sklearn.naive_bayes import GaussianNB # Gauss’scher naiver Bayes-Klassifikator

df = pd.read_csv("./datasets/happiness-report-2021.csv", sep='\t') # lädt CSV-Datei in Pandas

merkmale = ["Logged GDP per capita", "Social support", "Healthy life expectancy", "Freedom to make life choices", "

Perceptions of corruption"]

ziel = "Happiness" # abhängige Variable

X = np.c_[df[merkmale]] # extrahiert die Merkmalswerte als Matrix

y = np.c_[df[ziel]] # extrahiert die Zielwerte

Wähle per Zufall 30 % der Daten als Testdaten aus, d.h. 70 % als Trainingsdaten:

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30)

Teile die Trainings- und Testdaten der abhängigen Variablen in 3 Kategorien („Bins“):

y_train = KBinsDiscretizer(n_bins=3, encode='ordinal').fit_transform(y_train).ravel()

y_test = KBinsDiscretizer(n_bins=3, encode='ordinal').fit_transform(y_test).ravel()

Fitting und Prognose mit Pipeline aus Skalierung, PCA und Gauss Naive-Bayes-Klassifizierer:

pipe = make_pipeline(StandardScaler(), PCA(2), GaussianNB())

pipe.fit(X_train, y_train)

Vorhersagegenauigkeit angeben:

print("score (train values): ", f"{pipe.score(X_train, y_train):.2%}")

print("score (test values):",f"{pipe.score(X_test, y_test):.2%}")

-- 3D-Streudiagramm:

X_trans = pipe.steps[0][1].transform(X) # Dimensionsreduzierung auf die Hauptkomponenten!

y_pred = pipe.predict(X) # Vorhersagewerte der Pipeline

plt.figure(figsize=(8,5)); ax = plt.axes(projection="3d")

ax.scatter(X_trans[:,0], X_trans[:,1], y, c=y_pred)

ax.set_xlabel("Hauptkomponente 1"); ax.set_ylabel("Hauptkomponente 2"); ax.set_zlabel(ziel)

plt.show()

In detail, the following steps are performed in the program:

§6 Data analysis with Python 89

1. The CSV file is imported as a Pandas DataFrame and the data is stored in Numpy
arrays X and y.

2. The data X and y are separated into training and test data.

3. Nominal target data y_train and y_test for training and testing are ordinally divided
into 3 categories.

4. A pipeline pipe is formed from a standardizer, principal component analysis, and a
Gaussian naive Bayes classifier, and fitted with the training data.

5. A vector y_pred with the predicted values of the test data is determined from X_test.

6. The prediction accuracies of the naive Bayes classifier are output.

The program thus outputs the following results:

score (train values): 76.95%

score (test values): 78.59%

Instructions for plotting a scatter plot with the data projected onto the principal components
are then performed:

7. The original feature data X with its 5 dimensions are projected geometrically onto the
two principal components and accordingly the data for the entire feature expressions
are predicted using the pipeline and stored in the array variable y_pred.

8. The three-dimensional scatter plot is plotted. Here, the color of a data point is
determined by the value of the category determined by the Gaussian NB classifier
using the parameter c in ax.scatter.

The resutling scatter plot is shown in Figure 6.9. In the scatter plot, the individual countries

Hauptkomponente 1

2.5
2.0

1.5
1.0

0.5 Hauptko
mponente 2

0.8
0.6

0.4
0.2

0.0
0.2

Ha
pp

in
es

s

3

4

5

6

7

Figure 6.9. Scatter plot of the projection on the two principal components according to
a Naive Bayes classification (example 6.2). The classes are shown in different colors.

are represented as data points that differ in color based on their respective class determined
by the NB classifier. In this way, one can see the distribution of the three categories in
step 3 in relation to the two principal components. □

Part III

Time series

90

7
Time series analysis

Overview
7.1 introduction . 91

7.1.1 Time series and machine learning . 92
7.1.2 Model forms of time series . 92

7.2 Stochastic processes as the basis of time series 93
7.3 Causal linear processes . 94
7.4 The random walk hypothesis in economics . 95
7.5 Problems . 96

7.1 introduction

A time series is a time-dependent finite sequence of real-valued data points 𝑦0, 𝑦1, 𝑦2, . . . ,
𝑦𝑡 ∈ R, which is given an index reflecting the passage of time. An individual data point is
an observed or measured value of a certain process. Typical examples of such processes
are the development of Stock market prices, election intention polls, weather observations
or temperature values. A time series is often plotted against time by connecting the data
points are connected to a curve (Figure 7.1).1 The points in time to which data points
are assigned can be arranged equidistantly, i.e., at constant intervals (for example every
5 seconds), in other regularity (for example every working day), or irregular. Frequently
equidistant time series are considered, and the reciprocal value of the duration between sampling rate

two measured values is in this case called sampling rate.
A time series can take a single numerical value at a time, it is then called univariate or

scalar. If, on the other hand, it assumes in each case a tuple of several numerical values it
is called multivariate. Typical time series arise from the interaction of regular and random univariate, mul-

tivariatecauses. The regular causes may vary periodically or seasonally and may contain long-term
trends. Random influences are referred to as noise. noise

Time series are often analyzed to predict their future development. Time series
analysis is a special form of regression analysis and tries to identify and model patterns time series

analysisor regularities in the development of time series by means of statistical methods. Such

1cf. also: Burke et al. (2018); Kalvelage (2018).

91

92 Andreas de Vries: Machine Learning

0100200300400500600700800
-12

-8

-4

0

4

8

°C
 D

iff
er

en
z

Jahrtausende vor 1950

19
00

19
25

19
50

19
75

20
00

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

0,8

1

A
no

m
al

y
(°

C
 w

rt
 1

95
1-

1
98

0
m

ea
ns

)

Figure 7.1. Left: Temperature changes in Antarctica over the last 800 000 years compared
to the average of the last 1000 years, carried out by EPICA (Jouzel et al., 2007). Right:
Global temperature anomalies 1880 – 2015 (to the 1951–1980 mean), Data source: http:
//cdiac.ornl.gov/ftp/trends/temp/hansen/gl_land_ocean.txt; see also https://xkcd.

com/1732/

regularities are of quite principal interest, since given scientific theories often let expect
certain regularities.

The following textbooks on time series are recommended for further information and
are specifically referenced later at appropriate places in this lecture notes: Deistler and
Scherrer (2018), Kreiß and Neuhaus (2006), Neusser (2011), Palma (2016), and Vogel
(2015).

7.1.1 Time series and machine learning
Time series play a rather special role in machine learning. In many problems, the dependent
variable 𝑦, i.e., what we want to predict, depends on very clear inputs, such as pixels of an
image, words in a sentence, the characteristics of a person’s buying behavior, etc. In time
series, these independent variables are often unknown. For example, in stock markets, we
have no unique independent variables to which we can apply a model. Do stock markets
depend on the characteristics of a company or the characteristics of a country? Or on the
mood of the news? Certainly we can try to find a relationship between these independent
variables and stock market outcomes, and perhaps we can find some good models that
capture these relationships. The point is that these relationships are not very clear, nor are
the independent data readily available.

In the classical analysis of time series, one takes the radically different approach of not
looking for or assuming independent variables, but inferring their properties from the past
performance of the time series. I.e., the only independent variable of a time series is time.

7.1.2 Model forms of time series
Usually time series analysis is considered in combination with forecasting. However,
strictly speaking forecasting and the analysis of time series are two distinct activities. A
forecast is a view in an uncertain future. Time series is a description of the past. The main
precursors to the forecasting activity are the construction of a suitable model based upon
analysis of the historical development of the series and utilisation of information relevant
to the series’ likely future development.

That is not to say that the modelling and analysis process is concluded once a forecast
has been produced. Eventually the quantity being forecast will become known, this value
providing new information to incorporate into the analysis. Thereafter, in a typical live

http://cdiac.ornl.gov/ftp/trends/temp/hansen/gl_land_ocean.txt
http://cdiac.ornl.gov/ftp/trends/temp/hansen/gl_land_ocean.txt
https://xkcd.com/1732/
https://xkcd.com/1732/

§7 Time series analysis 93

situation, a forecast for a subsequent time will be produced and the forecast-observation
cycle repeated.

Three basic model forms encompass the great majority of time series and forecasting
situations. They are:

• trend models,

• seasonal models, i.e., models for systematic cyclical variation, and

• regressions, i.e., models with influential or causal variables.

Trend models are the simplest component models. They represent a system with a
straightforward linear progression: growing, decreasing, or staying roughly constant.
Seasonal models provide the mechanism to model systematic cyclical variation. This kind
of variation is often present in commercial series, and typically related to the passage of the
seasons as the earth orbits the sun during the course of a year. Regressions on explanatory
variables are potentially the most valuable models because they may incorporate much
external information.2

A forecast is a statement about an uncertain future. It is a belief, not a statement in fact.
Representing uncertainty in scientific analysis is the province of probability, its practical
application the domain of statistics. Whenever we make a forecast we actually make a
statement of probability, or more generally, state a probability distribution that quantifies
the nature of our uncertainty. Any and every forecast is predicted upon a fount of knowl-
edge; forecasts are therefore conditional probability statements, the conditioning being
in the existing state of the knowledge. Knowledge is available in several forms, a useful
classification being into historical information and professional wisdom or expertise.3

7.2 Stochastic processes as the basis of time series
In stochastics, the data points 𝑦0, 𝑦1, . . . , 𝑦𝑡 of a time series are regarded as a sample or
concrete realization of a stochastic process, i.e., as a sequence of random variables (𝑌𝑡)𝑡∈T
with an infinite index set T. We have already learned about the notion of random variable
in section 1.1 on page 7.

For more details on random variables in the context of time series, see e.g. Vogel
(2015:pp. 19–21).

Definition 7.1. Let T be an infinite subset of the set of real numbers, e.g. N0, Z or R+0 = stochastic pro-
cess[0,∞). Then a stochastic process is a family

(𝑌𝑡)𝑡∈T
of infinitely many random variables on a common probability space.

We can think of a stochastic process as a random choice of an event 𝜔 from the
given sample space Ω, and our observations are a time window T from the sequence of
realizations (𝑦𝑡) with 𝑦𝑡 = 𝑌𝑡 (𝜔). The sequence of numbers (𝑦𝑡)T is called a realization trajectory

or a trajectory of the stochastic process.

Definition 7.2. A stochastic process (𝑌𝑡)𝑡∈Z is called stationary, if the following statistical stationary pro-
cessfunctions are all independent of time 𝑡:

2Pole et al. (1994):pp. 4.
3Pole et al. (1994):p. 9.

94 Andreas de Vries: Machine Learning

mean 𝜇(𝑡) = E(𝑌𝑡) (7.1)
variance 𝜎2(𝑡) = Var (𝑌𝑡) = E

((𝑌𝑡 − 𝜇(𝑡))2) (7.2)
autocovariance 𝛾(𝑡, 𝑠) = Cov (𝑌𝑡 , 𝑌𝑠) = E

((𝑌𝑡 − 𝜇(𝑡)) · (𝑌𝑠 − 𝜇(𝑠))) for 𝑠 ∈ R (7.3)

For a stationary process especially 𝜇(𝑡) = 𝜇 and 𝜎(𝑡) = 𝜎 are thus constant.

Example 7.3 (White noise). A white noise is defined as a process

𝑌𝑡 = 𝜀𝑡 (7.4)

with a sequence (𝜀𝑡) of uncorrelated and identically distributed random variables whose
variance exists. Specifically, if the variance 𝜎2

𝜀 is the same for all 𝜀𝑡 we write 𝜀𝑡 ∼
WN(0, 𝜎2

𝜀). Moreover, if all random variables are normally distributed, we write 𝜀𝑡 ∼
N (0, 𝜎2

𝜀). The term “white noise” comes from the engineering sciences and describes
interfering signals which do not contain useful information because of their constant
spectral density, like white light. White noise is the simplest stochastic process. It playswhite noise

a prominent role in time series analysis. A white noise with constant mean and constant
variance, i.e., 𝜀𝑡 ∼ WN(𝜇𝜀, 𝜎2

𝜀), is a stationary process. □

Example 7.4 (Random Walk). A random walk is defined as a process

𝑌𝑡 = 𝑌𝑡−1 + 𝜀𝑡 (7.5)

with a random variable 𝜀𝑡 ∼ WN(𝜇𝜀, 𝜎2
𝜀). This is a process with independent increments.

If the expected value 𝜇𝜀 of the increments is different from zero, the process has a drift.random walk

However, it is not so easy to tell from the time series plot whether the random walk has
a drift. The variance of each random walk is Var (𝑌𝑡) = 𝑡𝜎2

𝜀 and is therefore linear with
time4. Also a random walk without drift can look in sections like this as if it drifts away.
But above all a random walk is not stationary. □

7.3 Causal linear processes
Definition 7.5. A stochastic process (𝑌𝑡)𝑡∈Z is called linear process, if for all 𝑡 ∈ Z it canlinear process

be represented by

𝑌𝑡 =
∞∑︁

𝑗=−∞
𝜓 𝑗 𝜀𝑡− 𝑗 . (7.6)

Where 𝜀𝑡 ∼ WN(0, 𝜎2
𝜀) is a centered white noise and (𝜓 𝑗) is a sequence of of real numbers

with
∞∑

𝑗=−∞

��𝜓 𝑗 �� < ∞ is. Equation (7.6) is also called Wold expansion.5.

The latter condition guarantees that the series in (7.6) converges with probability 1
and in the quadratic mean.6. A linear process is always stationary and has the following
values for expected value, variance, and covariance function, respectively:

𝜇 = 0, 𝜎2(𝑡) = 𝜎2
𝜀

∞∑︁
𝑗=−∞

𝜓2
𝑗 , 𝛾(𝑡) = 𝜎2

𝜀

∞∑︁
𝑗=−∞

𝜓 𝑗𝜓 𝑗+𝑡 . (7.7)

§7 Time series analysis 95

(Of course, 𝜎2(𝑡) = 𝛾(0).) The white noise perturbation terms (𝜀𝑡) ∼ WN(0, 𝜎2
𝜀) are also

called shocks or innovations, because they give the impulses driving the linear process.shocks, innova-
tions In signal theory, the sequence (𝜓 𝑗) is called a “linear filter” (actually: the “impulse

response” of a “linear filter”). A linear process thus corresponds to the convolution of a
linear filter (𝜓 𝑗) with a white noise (𝜀 𝑗).7.
Remark 7.6. If we interpret the time 𝑡 in (7.6) as the present, then the state 𝑌𝑡 of a linear
process at the present time obviously also depends on 𝜀𝑡+1, 𝜀𝑡+2, . . . and thus depends
on the future. If we take the process to be a real time series, this property is useless, of depends on the

future?course. For deterministic processes which – as in classical mechanics – are determined
by exact laws of motion and which we can measure exactly, this is true to some extent:
For such processes, however, a Laplacian demon only needs to know a single state at any
given time exactly, and it then knows all states of the process!

But as soon as we are dealing with random processes or with measurement inaccuracies,
we can know the states of the time series only in the past and the present, states of the
future we can forecast, at most. Therefore, we restrict ourselves to processes independent
of the future, which are given when the coefficients 𝜓 𝑗 vanish for all negative 𝑖. □

Definition 7.7. A stochastic process (𝑌𝑡)𝑡∈Z is called a causal linear process, if for all causal linear
process𝑡 ∈ Z it can be represented as

𝑌𝑡 =
∞∑︁
𝑗=0
𝜓 𝑗 𝜀𝑡− 𝑗 , (7.8)

where 𝜀𝑡 ∼ WN(0, 𝜎2) is a centered white noise and (𝜓 𝑗) is a sequence of of real numbers

with
∞∑
𝑗=0

��𝜓 𝑗 �� < ∞.

The term “causal” ensures that the past and present, but not the future, are causal
for the further course of the process. Causal linear processes have a special meaning for
the analysis and prognosis of stationary processes. This is based on the decomposition
theorem of Wold stating that almost every stationary process can be formed by a causal
linear process and a deterministic process.8 An important class of linear processes are ARMA(𝑝, 𝑞)

formed by the ARMA (𝑝, 𝑞)-models with parameters 𝑝, 𝑞 ∈ N0. They are given by the
equation

𝑌𝑡 = 𝜑1𝑌𝑡−1 + . . . + 𝜑𝑝𝑌𝑡−𝑝 + 𝜀𝑡 − 𝜃1𝜀𝑡−1 − . . . − 𝜃𝑞𝜀𝑡−𝑞, (7.9)

where the coefficients 𝜑1, . . . , 𝜑𝑝 and 𝜃1, . . . , 𝜃𝑞 are real numbers and (𝜀𝑡) is a centered
white noise with variance 𝜎2 is. For such a process to be causal, the coefficients satisfy
certain conditions. Let us first consider the autoregressive processes AR(𝑝).

7.4 The random walk hypothesis in economics
In the economic sciences for certain economic processes the random walk hypothesis
according to which the further development of a process depends solely on its current state
(𝑌𝑡−1), but not on further historical data or time-lagged variables. For example, according
to this hypothesis, the growth rate of real private consumption is determined neither by

4Vogel (2015):p. 27.
5Palma (2016):p. 93.
6Vogel (2015):p. 77.
7cf. Palma (2016):p. 122.
8Palma (2016):§2.5.1; Vogel (2015):§5.3.

https://de.wikipedia.org/wiki/Laplacescher_D%C3%A4mon

96 Andreas de Vries: Machine Learning

past growth rates nor by past disposable income; stock prices cannot be predicted from the
past either.9 Specifically, this assumption means that the trajectories of the time series in
question represents a random walk, possibly with a nonvanishing mean 𝜇. As an example,
consider the real price trajectory of the Dow Jones Index in 2019 compared to a random
walk simulated with Python, see Fig. 7.2. Here, the index values divided by the starting

2019-01-02 2019-04-01 2019-07-01 2019-10-01 2019-12-31
-0,02

0,00

0,02

0,04

0,06

0,08

0,10

0 50 100 150 200 250

0.00

0.02

0.04

0.06

0.08

Figure 7.2. Time series of the Dow Jones index throughout 2019 (left hand side, logarithm
of the quotients of the index values by the starting value). And a simulated random walk
(right hand side). Data source: finance.yahoo.com

value on January 2, 2019 are plotted logarithmically against time. This compares to a
simulated random walk with vanishing mean and innovation terms 𝜀𝑡 ∼ WN(0, 𝜎2

𝜀) with
mean 𝜇𝜀 = 0 and standard deviation 𝜎𝜀 = 0,0035 as shown in equation (7.5).

The random walk hypothesis is a widely accepted basic assumption in economics. In
the limit for infinitesimally small time steps, the random walk for normally distributed
innovation terms is a one-dimensional Wiener process, which in turn underlies the theory of
financial derivatives such as options, futures, and swaps.10 The random walk hypothesis is
consistent with the hypothesis of market efficiency of financial markets, according to whichmarket

efficiency current prices always include all available information. Consequently, with the assumption
of this hypothesis, no market participant is in a position to achieve permanently above-
average profits on financial markets by technical analysis, fundamental analysis, insider
trading or otherwise11. In12, three variants of the random walk hypothesis are discussed
that differ in the distribution of innovation terms 𝜀𝑡 .13

Is the random walk hypothesis realistic? Some economists doubt it. In particular,hypothesis dis-
puted proponents of technical analysis do not see random terms with identical distributions as

determining the price performance of securities, but rather certain geometric patterns of
the curves.14.

7.5 Problems
Problem 7.1 (Stationary processes). (a) Let be given the two stochastic processes

𝑌1(𝑡) = sin 𝑡 + 𝜀𝑡 , 𝑌2(𝑡) =
√︁
|𝑡 | + 𝜀𝑡 . (7.10)

9Neusser (2011):p. 3.
10Hull (2000):§10.
11Hull (2000):§10.
12Campbell et al. (1997):§2.1.
13https://books.google.de/books?id=7Gkri6HWWkgC&pg=PA28

14Campbell et al. (1997):§2.3.2; J. J. Murphy (2016).

https://finance.yahoo.com/quote/%5EDJI/history?period1=631152000&period2=1583020800&interval=1d&filter=history&frequency=1d
https://books.google.de/books?id=7Gkri6HWWkgC&pg=PA28

§7 Time series analysis 97

with innovation terms 𝜀𝑡 ∼ WN(0, 1). Program these two functions in Python and plot
the function graphs for 100 time points 𝑡 = 1, 2, 3, . . . , 100.

(b) Assume that the mean and the standard deviation of 𝑌1 are exactly 𝜇1(𝑡) = 0 and
𝜎1 = 1/

√
2, rsp., and correspondingly 𝜇2(𝑡) = 2

3
√
𝑡 and 𝜎2(𝑡) = 𝜇2(𝑡)/

√
8. Are 𝑌1 and

𝑌2, taken as stochastic processes, stationary in each case? Can you recognize it from the
graphs of the functions?

(c*) Derive a general formula that gives the mean 𝜇(𝑡) of the stochastic process
𝑌 (𝑡) = 𝑓 (𝑡) + 𝜀𝑡 where 𝑓 : R→ R and 𝜀𝑡𝑖𝑠 ∼ WN(0, 𝜎2

𝜀). What are then specifically the
formulas for 𝜇1(𝑡) and 𝜇2(𝑡) from (b)? What follows approximately for the limiting case
𝑡 → ∞ of large time periods?

Hints: Geometrically, the mean of a function 𝑓 in an interval [0, 𝑡] can be thought of
as the quotient 𝜇 = 𝐴/𝑡, where 𝐴 denotes the area of the function graph between 0 and 𝑡
with the 𝑡 axis. Alternatively, one can use the definition 𝜇 = 1

𝑡

∑𝑡
𝜏=0 𝑓 (𝜏)Δ𝜏 for the limit

Δ𝜏 → 0.

8
Autoregressive models

Overview
8.1 Stochastic processes in economics . 98
8.2 Definition and properties of autoregressive processes 99
8.3 Causality of autoregressive processes . 100
8.4 Problems . 103

8.1 Stochastic processes in economics

What do causal linear processes have to do with reality? The following example is a
classic from economics, which on closer inspection describes the influence of investments
on an economy as exactly such a stochastic process. It is the multiplier accelerator
model developed by Paul Samualson and published shortly after the seminal work of John
Maynard Keynes in the mid-1930s. Keynes proved with his multiplier approach that theMultiplier

approach of
Keynes government, by increasing its spendings, increases the national income far more than

it actually spends. This was in sharp contradiction to the usual austerity policy of the
states at that time, according to which the state should strictly avoid debt. Accordingausterity

to many economists and historians this restrictive austerity policy exacerbated the Great
Depression of 1929 and led in particular to the end of the Weimar Republic.1

Example 8.1 (Samuelson’s multiplier accelerator model). Paul Samuelson’s 1939 eco-
nomic multiplier accelerator model2 assumes a closed economy in which the demand for
goods can always be satisfied. According to this model, aggregate demand 𝑌𝑡 at timeSamuelson’s

multiplier
accelerator
model

𝑡 is composed additively of firms’ demand 𝐼𝑡 for capital goods and the demand 𝐶𝑡 of
households for consumption goods,3

𝑌𝑡 = 𝐼𝑡 + 𝐶𝑡 . (8.1)

1Büttner (2008):p. 423ff.
2Samuelson (1939).
3Krugman and Wells (2006):p. 283; Samuelson and Nordhaus (1995):p. 450; Bofinger (2007):p. 352;

Felderer and Homburg (1989):p. 112.

98

§8 Autoregressive models 99

In addition, the individual types of demand should be connected via the relationships

𝐶𝑡 = 𝛼𝑌𝑡−1 (8.2)
𝐼𝑡 = 𝛽 (𝐶𝑡 − 𝐶𝑡−1) + 𝐼Unplanned, (8.3)

0 < 𝛼, 𝛽 < 1.4. The reasoning behind this is that, on the one hand, general demand
𝑌𝑡 is time-delayed via the average propensity to consume 𝛼 has a proportional effect on
consumption 𝐶𝑡 ,5 and, on the other hand, the necessary investments are associated with
the accelerator 𝛽 and the unplanned investment demand 𝐼Unplanned depend linearly on the
change in consumption. Incidentally, the term multiplier here refers to the limit of the
series 1 + 𝛼 + 𝛼2 + . . .→ (1 − 𝛼)−1. Equations (8.2) and (8.3) inserted into (8.1) give the
linear difference equation of 2nd order

𝑌𝑡 = 𝛽 (𝛼𝑌𝑡−1 − 𝛼𝑌𝑡−2) + 𝐼Unplanned + 𝛼𝑌𝑡−1 = 𝜑1𝑌𝑡−1 + 𝜑2𝑌𝑡−2 + 𝐼Unplanned

with the coeffitients 𝜑1 = 𝛼(1 + 𝛽) und 𝜑2 = −𝛼𝛽. Depending on the parameters 𝛼
and 𝛽, the solution of the difference equation can take manifold forms,6. The model
becomes stochastic if, for each time 𝑡, investment 𝐼Unplanned is replaced by innovations 𝜀𝑡
∼𝑊𝑁 (0, 𝑉𝑡), which form a centered white noise. The demand for goods, conceived as a
stochastic process (𝑌𝑡), then satisfies the model equation

𝑌𝑡 = 𝜑1𝑌𝑡−1 + 𝜑2𝑌𝑡−2 + 𝜀𝑡 . (8.4)

See also section A.2 in the appendix.7 Blanchard (1981) determined the values 𝜑1 = 1.34,
𝜑2 = −0.42 for the gross domestic product (actually the GNP) of the USA minus a linear
trend in the period March 1947 to April 1978. □

8.2 Definition and properties of autoregressive processes
A model like Samuelson’s one in example 8.1 is called “autoregressive” because, except
for random innovation, the process value at time 𝑡 is a linear combination of values of the
same process at previous points in time. Formally:
Definition 8.2. For 𝑝 ∈ N0 is called a stochastic process (𝑌𝑡) autoregressive of order 𝑝, AR(𝑝)

or AR(𝑝) process for short, if it satisfies the model equation

𝑌𝑡 = 𝜑1𝑌𝑡−1 + . . . + 𝜑𝑝𝑌𝑡−𝑝 + 𝜀𝑡 (8.5)

with real constants 𝜑1, . . . , 𝜑𝑝 and a centered white noise 𝜀𝑡 ∼WN(0, 𝜎2
𝜀). The coefficients

𝜑𝑖 may vanish, but it must hold 𝜑𝑝 ≠ 0.
More generally, we also can describe an autoregressive process of order 𝑝 with non-

vanishing expected value by

𝑌𝑡 = 𝜑0 + 𝜑1𝑌𝑡−1 + . . . + 𝜑𝑝𝑌𝑡−𝑝 + 𝜀𝑡 (8.6)

with another real coefficient 𝜑0. By moving to the process 𝑌 ′
𝑡 = 𝑌𝑡 − 𝜇 we are immediately

led back to the model equation (8.5). For reasons discussed in the theory of difference
equations. the expected value for (8.6) however, is not 𝜑0 but8

𝜇 = E(𝑌𝑡) = 𝜑0
1 − 𝜑1 − . . . − 𝜑𝑝 . (8.7)

4Krugman and Wells (2006):pp. 272, 278.
5Felderer and Homburg (1989):p. 106.
6cf. Rinne and Specht (2002):pp. 152–154.
7for further informations cf. Samuelson and Nordhaus (1995):pp. 448, 557; Vogel (2015):p. 79.
8cf. Goldberg (1958):p. 170; Vogel (2015):p. 80.

100 Andreas de Vries: Machine Learning

8.3 Causality of autoregressive processes
At first glance, however, it is not necessarily obvious that (8.5) is a linear process at all.
Strictly speaking, this is not always the case, but most autoregressive processes are linear,
after all. The following theorem clarifies this statement.

Satz 8.3. An AR(𝑝) process (8.5) is a causal linear process if and only if the coefficients
𝜑𝑖 are so that the zeros of the characteristic polynomial

Φ𝑝 (𝑧) := 1 − 𝜑1𝑧 − 𝜑2𝑧
2 − . . . − 𝜑𝑝𝑧𝑝 (8.8)

all lie outside of the unit circle in the complex plane C, i.e., have an absolute value > 1
haben. The expected value of the processes is then is zero.

Proof. The role of the characteristic polynomial results from the Theory of linear dif-
ference equations with constant coeffitients9 if we rewrite (8.5) with the help of theThis proof is not

relevant for the
exam, but it ex-
plains the origin
of Φ𝑝 .

substitution 𝑦𝑡 = 𝑌𝑡−𝑝, i.e., 𝑌𝑡 = 𝑦𝑡+𝑝, to the form

𝑦𝑡+𝑝 − 𝜑1𝑦𝑡+𝑝−1 − . . . − 𝜑𝑝𝑦𝑡 = 𝜀𝑡 . (8.9)

Its solution behavior depends on the roots of the characteristic polynomial

𝑓𝑝 (𝑥) = 𝑥𝑝 − 𝜑1𝑥
𝑝−1 − 𝜑2𝑥

𝑝−2 − . . . − 𝜑𝑝 (8.10)

In particular, every solution 𝑦𝑡 converges for 𝜀𝑡 = 0 (of the “homogeneous difference
equation”) converges stably to 0, if the possibly complex roots 𝑥 lie within the unit
circle.10 Since Φ𝑝 (1/𝑥) = 𝑓𝑝 (𝑥), the roots of Φ𝑝 (𝑧) with 𝑧 = 1/𝑥 then lie exactly outside
the unit circle. In this case there exists a stable constant solution for the difference equation
(8.9),11 i.e., the process (𝑌𝑡) will always reach a stable equilibrium, namely its vanishing
expectation value, cf. (8.7).12. But is (8.5) a linear process at all? To see this, we need to
rewrite (8.5) as an infinite series (7.6). However, to avoid tedious and confusing “indexbackshift oper-

ator against in-
dex battles battles”, we introduce the backshift operator 𝐵, which simply resets a stochastic process

at time 𝑡 by one time unit:
𝐵𝑌𝑡 = 𝑌𝑡−1 (8.11)

If it is applied 𝑗 times, it causes a time shift back 𝑖 time units, 𝐵 𝑗𝑌𝑡 = 𝐵𝐵 . . . 𝐵𝑌𝑡 = 𝑌𝑡− 𝑗 .
This way we can simplify (8.5), after rearranging it to 𝜀𝑡 , by the operator equation

Φ𝑝 (𝐵)𝑌𝑡 = 𝜀𝑡 (8.12)

that is, completely without indices. Defining now the polynomial

Ψ(𝑧) =
∞∑︁
𝑗=0
𝜓 𝑗 𝑧

𝑗 , (8.13)

we can also rewrite (7.6) as an index-free operator equation

𝑌𝑡 = Ψ(𝐵) 𝜀𝑡 . (8.14)

9Goldberg (1958):pp. 163–164.
10Goldberg (1958):p. 152.
11Goldberg (1958):pp. 164, 171.
12cf.also Goldberg (1958):p. 170; Vogel (2015):p. 80.

§8 Autoregressive models 101

Substituting the term 𝜀𝑡 by the term on the left hand side of Equation (8.12), division by
𝑌𝑡 yields the equation

1 = Ψ(𝐵)Φ𝑝 (𝐵) = (𝜓0 + 𝜓1𝐵 + 𝜓2𝐵
2 + . . .) (1 − 𝜑1𝐵 − . . . − 𝜑𝑝𝐵𝑝). (8.15)

Since now on the left side there is only a constant, a comparison of the coefficients after
multiplication shows that 𝜓0 = 1 and the coefficients of all higher powers of 𝐵must vanish:

coefficient of 𝐵0: 𝜓0 = 1
coefficient of 𝐵 : 𝜓1 − 𝜑1 = 0
coefficient of 𝐵2: 𝜓2 − 𝜓1𝜑1 − 𝜑2 = 0
coefficient of 𝐵3: 𝜓3 − 𝜓2𝜑1 − 𝜓1𝜑2 − 𝜑3 = 0

...

This gives the recursive definitions of the coefficients

𝜓0 = 1, 𝜓1 = 𝜑1, 𝜓2 = 𝜑1𝜓1 + 𝜑2𝜓0, . . . , 𝜓 𝑗 =

𝑗∑︁
𝑘=1

𝜑𝑘𝜓 𝑗−𝑘 , . . . (8.16)

with 𝜑𝑘 = 0 for 𝑘 > 𝑝. Therefore we can rewrite the autoregressive process as

𝑌𝑡 =
∞∑︁
𝑗=0
𝜓 𝑗 𝜀𝑡− 𝑗 . (8.17)

Since we already know from the premises of the theorem that the process (𝑌𝑡) reaches a
stable equilibrium, the condition

∑∞
𝑗 |𝜓 𝑗 | < ∞ is necessarily satisfied. □

If one of the unit roots of the characteristic polynomial (8.8) has absolute value 1, then
the AR(𝑝) process (8.5) is non-stationary.13 In this case, there exist constant or periodic
solutions14 for the associated difference equation (8.9), i.e., the process (𝑌𝑡) will not reach
a stable equilibrium.15

Corollary 8.4. For 𝑝 ≦ 2 an AR(𝑝) process (8.5) is a causal linear process if and only
if we have:

|𝜑1 | < 1 for 𝑝 = 1, (8.18)
|𝜑1 | < 1 − 𝜑2 and |𝜑2 | < 1 for 𝑝 = 2. (8.19)

Proof. For 𝑝 = 1: The characteristic polynomial (8.8) is Φ1(𝑧) = 1 − 𝜑1𝑧 and thus has This proof, too,
is not relevant
for the exam,
but it gets by
with purely ele-
mentary math-
ematical trans-
formations

only a single zero, 𝑧 = 1/𝜑1. Since it only lies outside the unit circle for the case |𝜑1 | < 1,
according to theorem 8.3 the assertion holds.

For 𝑝 = 2: The characteristic polynomial (8.8) is Φ2(𝑧) = 1 − 𝜑1𝑧 − 𝜑2𝑧
2 and has the

two (possibly equal) roots

𝑎± = − 𝜑1
2𝜑2

±
√√
𝜑2

1

4𝜑2
2
+ 1
𝜑2

=
−𝜑1 ±

√︃
𝜑2

1 + 4𝜑2

2𝜑2
∈ C. (8.20)

13see Vogel (2015):p. 83.
14Goldberg (1958):p. 164.
15Goldberg (1958):p. 171.

102 Andreas de Vries: Machine Learning

In order to determine their position with respect to the unit circle, we must calculate their
absolute values |𝑎± | and determine when |𝑎± | > 1, but equivalently we can also calculate
in case |1/𝑎± | < 1. The reciprocals are given by

1
𝑎±

=
−𝜑1 ±

√︃
𝜑2

1 + 4𝜑2

2
, (8.21)

as can be checked verified with the help of the tird binomial formula:

𝑎± · 1
𝑎±

=
−𝜑1 ±

√︃
𝜑2

1 + 4𝜑2

2𝜑2
·
𝜑1 ∓

√︃
𝜑2

1 + 4𝜑2

2
=
𝜑2

1 + 4𝜑2 − 𝜑2
1

4𝜑2
= 1.

Now we have to distinguish two cases, depending on whether the expression under the
root sign is positive or negative.

The case 𝜑2
1 + 4𝜑2 ≧ 0: With (8.21) then |1/𝑎± | < 1 is equivalent to

−1 <
1
𝑎−

=
−𝜑1 −

√︃
𝜑2

1 + 4𝜑2

2
≦

1
𝑎+

=
−𝜑1 +

√︃
𝜑2

1 + 4𝜑2

2
< 1

i.e.,
𝜑1 − 2 < −

√︃
𝜑2

1 + 4𝜑2 ≦ 0 ≦
√︃
𝜑2

1 + 4𝜑2 < 𝜑1 + 2.

Squaring the first and the last inequality we obtain

𝜑2
1 − 4𝜑1 + 4 > 𝜑2

1 + 4𝜑2 und 𝜑2
1 + 4𝜑2 < 𝜑

2
1 + 4𝜑1 + 4

thus 1 − 𝜑2 > 𝜑1 und −𝜑1 < 1 − 𝜑2, i.e., |𝜑1 | < 1 − 𝜑2.
The case 𝜑2

1 + 4𝜑2 < 0: In this case the roots are non-real and pairwise complex-

conjugate, i.e., 𝑎± = − (
𝜑1 ± i

√︃
|𝜑2

1 + 4𝜑2 |
)
. Especially we have���� 1

𝑎+

����2 =

���� 1
𝑎−

����2 =
𝜑2

1 − (𝜑2
1 + 4𝜑2)
4

= −𝜑2,

i.e., 0 ≦ |1/𝑎± | < 1 ⇔ 0 ≧ 𝜑2 > −1. All in all, the roots 𝑎± are outside of the unit circle,
if the inequalities (8.19) hold.16 □

In the sequel we will consider some examples to illustrate the meaning of the corollary.

Example 8.5 (AR(1) processes). 17 With Equation (8.5) an AR(1) process is given byAR(1)

𝑌𝑡 = 𝜑1𝑌𝑡−1 + 𝜀𝑡 . (8.22)

According to corollary 8.4 it represents a causal linear process in the case |𝜑1 | < 1. In
fact we van directly recalculate,

𝑌𝑡 = 𝜑1𝑌𝑡−1 + 𝜀𝑡
= 𝜑2

1𝑌𝑡−2 + 𝜑1𝑌𝑡−1 + 𝜀𝑡
= 𝜑3

1𝑌𝑡−3 + 𝜑2
1𝑌𝑡−2 + 𝜑1𝑌𝑡−1 + 𝜀𝑡 = . . .

=

∞∑︁
𝑗=0

𝜑
𝑗
1𝜀𝑡− 𝑗 .

§8 Autoregressive models 103

This series converges exactly for |𝜑1 | < 1. For |𝜑1 | = 1, (𝑌𝑡) does not represent a stationary
process. As a special case, the random walk (7.5) with 𝜑1 = 1 is no causal process. Finally,random walk ...

again! for |𝜑1 | > 1 the process is stationary and linear, but not causal.18. □

Example 8.6 (AR(2) processes). With Equation (8.5) an AR(2) process is given by AR(2)

𝑌𝑡 = 𝜑1𝑌𝑡−1 + 𝜑2𝑌𝑡−2 + 𝜀𝑡 . (8.23)

Then it is a causal linear process if and only if condition (8.19) is satisfied. □

8.4 Problems
Problem 8.1 (Simulated AR(1)-processes). (a) Program in Python a function AR_1(phi)

that implements an AR(1) process with the parameter 𝜑 and a random variable 𝜀𝑡 ∼
WN(0, 1) as a time series with 1000 data values. Display with it four function plots for
𝜑 = −1, 𝜑 = 0.5, 𝜑 = 1, and 𝜑 = 2.

(b) Given such AR(1) processes, we have for 𝜑 ≦ 1:

𝜇 = 0, 𝜎2 =

{
1 if |𝜑 | < 1,
𝑡, if 𝜑 = 1. (8.24)

Using this information, describe the graphs of the functions.

16cf. also Goldberg (1958):p. 171; Vogel (2015):p. 85.
17Vogel (2015):p. 81.
18Vogel (2015):p. 81.

9
Autoregressive models with moving

average

Overview
9.1 MA models . 105
9.2 ARMA . 107
9.3 Estimation of the order of ARMA models . 109

Autoregressive models seem to describe real time series well. After all, classics of
economic theory such as Samuelson’s multiplier accelerator model can be represented as
such processes. However, autoregressive models also have drawbacks. One of them iscausal ⇒ sta-

tionary that if they are causal, they are automatically stationary. This sounds unspectacular at first,

0 20 40 60 80 100
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
AR(1), =0

0 20 40 60 80 100
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
AR(2), =0

0 20 40 60 80 100
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
AR(3), =0

0 20 40 60 80 100

1.0

0.5

0.0

0.5

1.0

AR(1), =0.12

0 20 40 60 80 100

1.0

0.5

0.0

0.5

1.0

AR(2), =0.12

0 20 40 60 80 100

1.0

0.5

0.0

0.5

1.0

AR(3), =0.12

Figure 9.1. Simulations of different AR processes with the coefficients 𝜑1 = 0.8 for
AR(1), 𝜑1 = 0.8, 𝜑2 = −0.7 for AR(2), and 𝜑1 = 0.8, 𝜑2 = −0.7, 𝜑3 = −0.2 for AR(3),
and line by line each with the values 𝜎𝜖 = 0 und 0.12.

but in reality it is a highly uninteresting property. For example, consider the simulations

104

§9 Autoregressive models with moving average 105

of autoregressive processes in Figure 9.1. In the first line of the figure, the trajectories of
the three simulated processes AR(1), AR(2), and AR(3) are sketched without shocks (i.e.,
𝜎𝜀 = 0). They converge more or less briskly toward the stationary value zero. In contrast, stationarity is

mostly boringif the same AR processes are now given a non-vanishing value (here 𝜎𝜀 = 0,5), we see
that it is only the shocks that prevent a causal autoregressive process from remaining in its
stationary equilibrium.

What does this tell us? Self-reference (“autoregression”!) without randomness only
leads us to zero. Pretty boring, actually. But with shocks of sufficiently high standard Self-reference

without ran-
domness →
0

deviation the deterministic part of the time series decreases over the long run. So why not
go the other way and use models that do not rely on the previous values 𝑌𝑡− 𝑗 of the time
series, but exclusively on the shocks 𝜀𝑡− 𝑗? This is exactly what happens in the MA model,
i.e., moving average models. We will discuss them in the next section. MA = Moving

Average

9.1 MA models
The basic idea of MA models is that the innovations 𝜀𝑡− 𝑗 , 𝑗 = 1, 2, . . . , of the present and
the past determine the current value 𝑌𝑡 of the time series, as a moving average depending
on weighting factors 𝜃 𝑗 . Thus, quite similar to the autoregressive models, where the
past observed values 𝑌𝑡− 𝑗 determine the current value as a weighted sum. Formally, then, MA and regres-

siondetermining the parameters of an MA model using a given time series is a linear regression.
However, since the values of the innovations are not observable, it is not a regression in
the usual sense. Let us define MA processes more precisely for this purpose.

Definition 9.1. For 𝑞 ∈ N0 is called. a stochastic linear process (𝑌𝑡) process of moving MA(𝑞)

averages of order 𝑞, or in short MA(𝑞) process, if it satisfies the model equation

𝑌𝑡 = 𝜀𝑡 + 𝜃1𝜀𝑡−1 + . . . + 𝜃𝑞𝜀𝑡−𝑞 (9.1)

with real constants 𝜃1, . . . , 𝜃𝑞 and a white noise 𝜀𝑡 ∼ WN(0, 𝜎2
𝜀).1 The coefficients 𝜃𝑖

may be zero for 𝑖 < 𝑞, only the highest coefficient 𝜃𝑞 must not vanish, 𝜃𝑞 ≠ 0.

Remark 9.2. A causal linear process (7.8) is thus an MA(∞) process. In other words, an MA(∞)

MA process is by construction always causal and thus stationary. On the other hand, this
makes every autoregressive causal process an MA(∞) process. □

Thus defined, a general MA process always has an expected value of zero. An MA
process with an expected value 𝜇 = E(𝑌𝑡) ≠ 0 we could describe by adding in (9.1) the
constant 𝜇:

𝑌𝑡 = 𝜇 + 𝜀𝑡 + 𝜃1𝜀𝑡−1 + . . . + 𝜃𝑞𝜀𝑡−𝑞 (9.2)

However, we can transform this model equation by considering the process 𝑌 ′
𝑡 = 𝑌𝑡 − 𝜇

to (9.1). Because of the uncorrelated nature of the variables 𝜀𝑡 of the white noise, the
autocorrelation function 𝜌(𝑘) of a MA(𝑞) process satisfies

𝜌(𝑘) =

𝜃1 + 𝜃1𝜃𝑘+1 + 𝜃2𝜃𝑘+2 + . . . + 𝜃𝑞−𝑘𝜃𝑞

1 + 𝜃2
1 + 𝜃2

2 + . . . + 𝜃2
𝑞

für 1 ≦ 𝑘 ≦ 𝑞,

0 für 𝑘 > 𝑞.
(9.3)

1In the literature, the coefficients 𝜃 𝑗 are often defined with the opposite sign, e.g., Vogel (2015). We stick
here to the convention of Brockwell and Davis (2016), Deistler and Scherrer (2018), Kreiß and Neuhaus
(2006), Neusser (2011), Palma (2016), and Shumway and Stoffer (2017), which is also used in the Python
module statsmodels.

106 Andreas de Vries: Machine Learning

Although any MA process is causal and stationary by construction, it is common to impose
conditions on the parameters 𝜃𝑖. A key reason is that without such constraints we cannot
unambiguously infer the coefficients from the autocorrelation function. For example an
MA(1) process with the parameter 1/𝜃1 has the same ACF and thus the same PACF as the
MA(1) process with parameter 𝜃1, as shown by the following transformation of (9.3):

𝜌(1) =
1
𝜃1

1 + 1
𝜃2

1

=

1
𝜃1

𝜃2
1+1
𝜃2

1

=
𝜃1

1 + 𝜃2
1

A remedy for this is the criterion of invertibility of a MA process, which requires that it
can be described as an AR(∞) process.

Definition 9.3. An MA(𝑞) process (𝑌𝑡)𝑡∈Z is called invertible with respect to (𝜀𝑡), if it
can be described as an AR(∞) process, i.e., in th forminvertible

𝑌𝑡 =
∞∑︁
𝑖=1

𝜑𝑖𝑌𝑡−𝑖 + 𝜀𝑡 (9.4)

such that (𝜑𝑖) is a sequence of real numbers satisfying
∞∑
𝑖=1

|𝜑𝑖 | < ∞.

What is the benefit of invertibility of an MA process? Since an invertible MA process
with (9.4) satisfies the equation

𝜀𝑡 = 𝑌𝑡 −
∞∑︁
1
𝜑𝑖𝑌𝑡−𝑖 (9.5)

its unobservable innovations 𝜀𝑡 can be reconstructed from the observable process values
𝑌𝑡 of the past an the present. Thus, for an invertible process the equivalent AR processinvertible: AR

process recon-
structable from
MA

can also be reconstructed. For non-invertible MA processes such a reconstruction is not
possible.

Moreover, the restriction to invertible MA-processes is practically no restriction, be-
cause for an MA(𝑞) process with a characteristic polynomial having no root on the unit
circle, we can always find an MA(𝑞) representation with a characteristic polynomial whose
roots are neither on nor inside the unit circle, as we will see later with Theorem 9.8.

Satz 9.4. An MA(𝑞) process (9.1) is invertible with respect to (𝜀𝑡), if and only if all roots
of the characteristic polynomial

Θ𝑞 (𝑧) = 1 + 𝜃1𝑧 + 𝜃2𝑧
2 + . . . + 𝜃𝑞𝑧𝑞 (9.6)

lie outside the unit circle.

Proof. 2. □

Example 9.5. Since a MA(0) process of the model equation is 𝑌𝑡 = 𝜀𝑡 it is a white noise
(Example 7.3). Since the characteristic polynomial Θ0(𝑧) = 1 has no zeros at all, inMA(0) = white

noise particular it has no zeros for |𝑧 | ≦ 1. Which AR process corresponds to it then? Of course
the AR(0) process. □

§9 Autoregressive models with moving average 107

Example 9.6. An MA(1) process is given by the equation 𝑌𝑡 = 𝜀𝑡 + 𝜃1𝜀𝑡−1. To find theMA(1)

coefficients 𝜑𝑖 in its series (9.4), we set 𝜀𝑡 = 𝑌𝑡 − 𝜃1𝜀𝑡−1 successively with decreasing 𝑡
recursively into itself and thus obtain

𝜀𝑡 = 𝑌𝑡 − 𝜃1𝜀𝑡−1 = 𝑌𝑡 − 𝜃1𝜀𝑡−1 − 𝜃2
1𝜀𝑡−2 = . . . = 𝑌𝑡 −

∞∑︁
𝑖=1

𝜃𝑖1𝑌𝑡−𝑖

Thus, the process is invertible exactly when |𝜃1 | < 1. With the characteristic polynomial
Θ1(𝑧) = 1 − 𝜃1𝑧 this is quite consistent with Theorem 9.4.3. □

9.2 ARMA
The starting point of this chapter was to find models for time series that are more expressive
than autoregressive models. But unfortunately we did not succeed so far, despite the new
approach with moving averages: By remark 9.2, every autoregressive causal process is
indeed a special MA(∞) process, i.e., MA processes are a true extension of autoregressive
processes. However, with definition 9.3 an invertible MA process is immediately an
AR(∞) process. Invertible MA processes are of particular interest, however, because only
for them the unobservable innovations 𝜀𝑡− 𝑗 can be uniquely reconstructed from the process
variables 𝑌𝑡 of the present and the past. A next step to increase the expressive power of

0 20 40 60 80 100

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
AR(2), =0

0 20 40 60 80 100

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
ARMA(2,2), =0

0 20 40 60 80 100

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
AR(2), =0.02

0 20 40 60 80 100

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
ARMA(2,2), =0.02

0 20 40 60 80 100

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
AR(2), =0.1

0 20 40 60 80 100

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
ARMA(2,2), =0.1

Figure 9.2. Comparison of simulated AR and ARMA processes with the coefficients
𝜑1 = 0.8, 𝜑2 = −0.7 for AR(2), and 𝜑1 = 0.8, 𝜑2 = −0.7, 𝜃1 = 0.8 for ARMA(2,2),
depicted line by line with the standard deviations 𝜎𝜀 = 0, 0.02 und 0.1.

the models is to use the ARMA models which combine both models. A comparison ARMA = AR +
MAof AR(2) processes with ARMA(2,2) processes of corresponding AR coefficients for

different innovation terms 𝜎 is depicted in Figure 9.2. It shows that the basic structure of
the autoregression is smoothed by the normally distributed innovation terms of the MA
coefficients, or even dominated by them at high values for 𝜃 𝑗 or 𝜎𝜀.

2Brockwell and Davis (2016):§3.1.
3cf. also Shumway and Stoffer (2017):p. 83.

108 Andreas de Vries: Machine Learning

Overall, ARMA processes do not qualitatively increase the expressive power of AR
processes, but they do expand the possibilities to model the influence of past innovations
in a differentiated way.

Definition 9.7. A stochastic process (𝑌𝑡)𝑡∈Z is called ARMA(𝑝, 𝑞)-Prozess, if it is sta-
tionary and satisfies the equation

𝑌𝑡 − 𝜑1𝑌𝑡−1 − . . . − 𝜑𝑝𝑌𝑡−𝑝 = 𝜀𝑡 + 𝜃1𝜀𝑡−1 + . . . + 𝜃𝑞𝜀𝑡−𝑞 (9.7)

where we have 𝜑𝑝 ≠ 0 and 𝜃𝑞 ≠ 0, and where the characteristic polynomials Φ𝑝 (𝑧) and
Θ𝑞 (𝑧) defined according to (8.8) and (9.6), respectively, have no common zeros.

The model equation (9.7) is of course equivalent to equation (7.9), which we have
learned in the Introduction. A ARMA(𝑝, 0) process is a pure AR(𝑝)-process, while aARMA(𝑝, 0) =

AR(𝑝) ARMA(0, 𝑞) process is a pure MA(𝑞) process. The conditions for stationarity (definition
ARMA(0, 𝑞) =

MA(𝑞) 7.2), causality (definition 8.2) and invertibility (definition 9.3) apply unchanged also to
the ARMA model. Thus, in particular, we have:

• A stationary solution of Equation (9.7) exists exactly when the AR polynomial Φ𝑝

has no zero on the unit circle; the stationary solution is unique.

• An ARMA process is causal with respect to 𝜀𝑡 exactly when all zeros of the AR
polynomial Φ𝑝 lie outside the unit circle.

• An ARMA process is invertible with respect to 𝜀𝑡 if and only if all zeros of the MA
polynomial Θ𝑞 lie outside the unit circle.

If the characteristic polynomials Φ𝑝 and Θ𝑞 had common zeros 𝑎𝑖, then there could
be several stationary solutions of the equation (9.7), i.e., one solution of the equation
would not be unique. However, the uniqueness can be easily established by dividing both
polynomials by the common factors (𝑧 − 𝑎𝑖). Thereby the orders 𝑝 and 𝑞 reduce by one
for each linear factor.4 The following remarkable theorem goes far beyond this property,
for it states that not only can ARMA processes be suitably transformed into causal and
invertible processes, but that in almost all cases they even are so.

Satz 9.8. Let (𝑌𝑡) be an ARMA(𝑝, 𝑞) process given by equation (9.7) whose characteristic
polynomials have no zeros on the unit circle, i.e. that Φ𝑝 (𝑧) ≠ 0 and Θ𝑞 (𝑧) ≠ 0 hold for
all |𝑧 | = 1. Then there are always two polynomials Φ̃𝑝 (𝑧) and Θ̃𝑞 (𝑧) with degree 𝑝 and 𝑞,
respectively, and a white noise 𝜀𝑡 , such that

𝑌𝑡 − 𝜑̃1𝑌𝑡−1 − . . . − 𝜑̃𝑝𝑌𝑡−𝑝 = 𝜀𝑡 + 𝜃1𝜀𝑡−1 + . . . + 𝜃𝑞𝜀𝑡−𝑞 (9.8)

and such that (𝑌𝑡) is causal and invertible ist.

Proof. 5 Let 𝑎𝑟 , . . . , 𝑎𝑝 and 𝑏𝑠, . . . , 𝑏𝑞be the roots ofΦ𝑝 andΘ𝑞, respectively, with |𝑧 | < 1
inside the unit circle. The zeros thus obtained by replacing them by their reciprocals, i.e.,
by

Φ̃𝑝 (𝑧) = Φ𝑝 (𝑧) ·
𝑝∏
𝑗=𝑟

(1 − 𝑎 𝑗 𝑧)
(1 − 𝑎−1

𝑗 𝑧)
, Θ̃𝑞 (𝑧) = Θ𝑞 (𝑧) ·

𝑞∏
𝑗=𝑠

(1 − 𝑏 𝑗 𝑧)
(1 − 𝑏−1

𝑗 𝑧)
(9.9)

4Vogel (2015):p. 102.
5Brockwell and Davis (1991):Proposition 3.5.1.

§9 Autoregressive models with moving average 109

defined polynomials have no zeros |𝑧 | ≦ 1. Using the backshift operator, already defined
in the proof of Theorem 8.3 in equation (8.11), we can then calculate the innovation terms

𝜀𝑡 =
Φ̃𝑝 (𝐵)
Θ̃𝑞 (𝐵)

𝜀𝑡 (9.10)

With Brockwell and Davis (1991:p. 105) they are white noise again. Therefore byEquation
(9.8) the process (𝑌𝑡) is causal and invertible. □

Remark 9.9. Theorem 9.8 is amazing. It goes back to work done by U.S. statisticians
Brockwell and Davis in the 1980s and states nothing less than that all ARMA processes
are causal and linear as long as their characteristic polynomials do not have unit roots.
What may have looked more like a purely technical reformulatio for the statement on
invertibility – suitably transforming random terms 𝜀𝑡 to 𝜀𝑡 does not change anything about
causal relations – means an almost dramatic consequence for the philosophy of time at philosophy of

time?first sight: A non-causal process (with characteristic polynomials without unit roots),
which by Remark 7.6 depends on random terms of the future, is by theorem 9.8 seamlessly
representable as a process which exactly does not have this dependence into the innovations
of the future. At second glance, however, the meaning for causality then does reduce to a
more technical aspect, because non-causal processes do depend on future random events
𝜀𝑡 , but not on future observations 𝑌𝑡 . Strictly speaking, therefore, the term “causal” in
definition 8.2 is not appropriate, because a non-causal process may well be causal in the
usual literal sense of “causality”! The technical terms are what they are, though. However, misunderstanding

of “causal”?since they are very common in the technical literature on the one hand and very useful
on the other hand, since causal and invertible processes are mathematically easier to treat
with, they are also used in this lecture notes. □

9.3 Estimation of the order of ARMA models
So far we have worked out the theory of ARMA processes, but have not yet dealt with
the practical problem of classifying a real observed time series as an ARMA process.
The first task must therefore be to find suitable methods for this purpose. In practice, the estimating an

ARMA model
for a given time
series

autocorrelation function ACF and the partial autocorrelation function PACF have proven
useful for this purpose, and we discuss them in this section.

Definition 9.10. The estimated autocorrelation function (ACF) 𝜌̂ : N0 → R, for a time ACF =

estimated
autocorrelation
function

series (𝑦𝑡), also called empirical autocorrelation function, is defined by

𝜌̂(𝑘) =

𝑛−𝑘∑︁
𝑡=1

(𝑦𝑡 − 𝑦̄) (𝑦𝑡+𝑘 − 𝑦̄)
𝑛∑︁
𝑡=1

(𝑦𝑡 − 𝑦̄)2
, (9.11)

with the arithmetic mean 𝑦̄ of the measured values {𝑦𝑡}.6.

The autocorrelation function 𝜌̂(𝑘) describes the correlation between an observation 𝑦𝑡
and all other observation values 𝑦𝑡+1, . . . , 𝑦𝑡+𝑘 thereafter, idea of ACF

6cf. Vogel (2015):p. 32.

110 Andreas de Vries: Machine Learning

𝑦𝑡−1,. . . , 𝑦𝑡 , 𝑦𝑡+1, . . . , 𝑦𝑡+𝑘−1, 𝑦𝑡+𝑘 , 𝑦𝑡+𝑘+1, . . .
. . .

With the help of the autocorrelation function we can now define the partial autocorrelation
function as follows.

Definition 9.11. The estimated partial autocorrelation function (PACF) 𝜋̂ : N0 → R,PACF = esti-
mated partial
autocorrelation
function

often called empirical partial autocorrelation function, is defined by

𝜋̂(𝑘) = 𝐶𝑘,𝑘
with the coefficients 𝐶𝑘,𝑡 , which are given by the Durbin-Levinson recursion7Help, a compli-

cated recursive
definition!? . . .
but easy to pro-
gram!

𝐶𝑘,𝑘 =

𝜌̂(𝑘) −
𝑘−1∑︁
𝑡=1

𝐶𝑘−1,𝑡 𝜌̂(𝑘 − 𝑡)

1 −
𝑘−1∑︁
𝑡=1

𝐶𝑘−1,𝑡 𝜌̂(𝑡)
, 𝐶𝑘,𝑖 = 𝐶𝑘−1,𝑖 − 𝐶𝑘,𝑘 𝐶𝑘−1,𝑘−𝑖 (0 < 𝑖 < 𝑘)

The initial values 𝐶0,0 = 1 and 𝐶1,1 = 𝜌̂(1) result from the first of the two equations.

The PACF 𝜋̂(𝑘) yields a measure of the correlation of 𝑦𝑡 and 𝑦𝑡+𝑘 , which subtracts the
influences of the values in between,idea of PACF

𝑦𝑡−1,. . . , 𝑦𝑡 , 𝑦𝑡+1, . . . , 𝑦𝑡+𝑘−1, 𝑦𝑡+𝑘 , 𝑦𝑡+𝑘+1, . . .

For a given time series, we will generally not know the orders 𝑝 and 𝑞. The autocorrelation
functions ACF and PACF are important tools to determine the nature of the underlying
process. They can be used to estimate the orders 𝑝 and 𝑞 for a given time series. The
estimates are based on the theoretical properties of ACF and PACF summarized in table
9.1. In a AR(𝑝) process, the the PACF for lags 𝑘 > 𝑝 strives exponentially towards

Table 9.1. Theoretical properties of the autocorrelation functionsa

Prozess ACF PACF
AR(𝑝) decreases exponentially to zero for 𝑘 > 𝑝

(monotone or oscillating)
𝜋(𝑘) = 0 für 𝑘 > 𝑝

MA(𝑞) 𝜌(𝑘) = 0 für 𝑘 > 𝑞 decreases exponentially to zero for 𝑘 > 𝑞
(monotone or oscillating)

ARMA(𝑝, 𝑞) decreases exponentially to zero for grow-
ing 𝑘 > max{𝑝, 𝑞 + 1} (monotone or os-
cillating)

decreases exponentially to zero for great
𝑘 >max{𝑝, 𝑞+1} (monotone or oscillat-
ing)

aNeusser (2011):pp. 64–65; Vogel (2015):p. 110.

zero, for a MA(𝑞) process it is the ACF for lags 𝑘 > 𝑞.8. For a ARMA(𝑝, 𝑞) processACF and
PACF help
to determine
ARMA(𝑝, 𝑞)

with 𝑝, 𝑞 > 0 finally, neither of the autocorrelation functions breaks down, but both
decrease exponentially towards zero, possibly oscillatory9. If (𝑌𝑡) is a causal and invertible

7cf. Vogel (2015):p. 35; Kreiß and Neuhaus (2006):pp. 40–41, 69–71; Neusser (2011):p. 63.
8cf. Vogel (2015):pp. 88–89; Kreiß and Neuhaus (2006):p. 143; Neusser (2011):64f.
9Vogel (2015):p. 110.

§9 Autoregressive models with moving average 111

ARMA(𝑝, 𝑞) process. the following holds. The ACF satisfies for 𝑘 > max{𝑝, 𝑞 + 1} the
difference equation

𝜌(𝑘) = 𝜑1𝜌(𝑘 − 1) + . . . + 𝜑𝑝𝜌(𝑘 − 𝑝).
The zeros of the characteristic equation lie within the unit circle (cf. the discussion
following equation because of the causality (cf. the discussion follwing Equation (8.10)).
That is, the autocorrelation function 𝜌(𝑘) decreases exponentially toward zero when 𝑘
tends to infinity. Whether 𝜌(𝑘) decreases monotonically or oscillatingly towards zero
depends on the zeros of the characteristic equation. The PACF 𝜋(𝑘) starts to decrease
toward zero at 𝑘 > 𝑝.

To get a guess about the magnitude of 𝑝 and 𝑞, a visual evaluation with the help of the
correlograms of the empirical ACF and PACF should be done, as shown in in Figure 9.3.
A correlogram is the functional graph of the autocorrelation functions 𝜌̂(𝑘) and 𝜋̂(𝑘),
respectively, often plotted as a bar plot against lag 𝑘 . Frequently, a confidence interval for

0 5 10 15 20 25

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
Autocorrelation

0 5 10 15 20 25
0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
Partial Autocorrelation

Figure 9.3. Correlograms of the estimated autocorrelation functions. ACF and the PACF for a real
time series. The seasonal period 12 can be seen well here

the confidence level 95% is plotted. For the autocorrelation function 𝜌̂(𝑘) this confidence
level denotes the probability with which the respective hypothesis is to be rejected for a confidence

interval for
filtering the
MA and AR
coefficients

MA(𝑘) process with normally distributed noise 𝜀𝑡 ∼ 𝑁 (0, 𝜎2
𝜀). The interval limits are

given by the Bartlett formula10

𝜌±(𝑘) = ±1,96 ·
√︂

1 + 2 [𝜌(1) + 𝜌(2) + . . . + 𝜌(𝑘)]
𝑛

. (9.12)

In the correlogram for the partial autocorrelation function, on the other hand, the interval
boundaries are drawn accordingly11

±1,96√
𝑛
. (9.13)

With correlograms we can thus at least identify pure AR and MA processes, namely when
the ACF or PACF suddenly decays after a few lags 𝑘 . For ARMA(𝑝, 𝑞) models with
𝑝 · 𝑞 > 0, however, the orders on the correlograms are not so easy to identify, because both
ACF and PACF here decay exponentially. A listing of various simulated general ARMA
processes is shown in Figure 9.4. Here the tendency for increased autocorrelations if
the order of the autoregression is increasing is well seen, starting with the completely

10Vogel (2015):pp. 96–98.
11Neusser (2011):p. 66.

112 Andreas de Vries: Machine Learning

0 25 50 75 100 125 150 175 200
3

2

1

0

1

2

3
White Noise

0 10 20 30 40 50
0.2

0.0

0.2

0.4

0.6

0.8

1.0
Autocorrelation

0 10 20 30 40 50
0.2

0.0

0.2

0.4

0.6

0.8

1.0
Partial Autocorrelation

0 25 50 75 100 125 150 175 200

0

5

10

15

Random Walk

0 10 20 30 40 50
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

Autocorrelation

0 10 20 30 40 50

0.2

0.0

0.2

0.4

0.6

0.8

1.0
Partial Autocorrelation

0 25 50 75 100 125 150 175 200

2

0

2

4

AR(1)

0 10 20 30 40 50

0.2

0.0

0.2

0.4

0.6

0.8

1.0
Autocorrelation

0 10 20 30 40 50

0.2

0.0

0.2

0.4

0.6

0.8

1.0
Partial Autocorrelation

0 25 50 75 100 125 150 175 200
4

2

0

2

AR(2)

0 10 20 30 40 50

0.2

0.0

0.2

0.4

0.6

0.8

1.0
Autocorrelation

0 10 20 30 40 50

0.2

0.0

0.2

0.4

0.6

0.8

1.0
Partial Autocorrelation

0 25 50 75 100 125 150 175 200

4

2

0

2

MA(1)

0 10 20 30 40 50
0.2

0.0

0.2

0.4

0.6

0.8

1.0
Autocorrelation

0 10 20 30 40 50
0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0
Partial Autocorrelation

0 25 50 75 100 125 150 175 200

4

2

0

2

4

MA(2)

0 10 20 30 40 50
0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0
Autocorrelation

0 10 20 30 40 50
0.4
0.2
0.0
0.2
0.4
0.6
0.8
1.0

Partial Autocorrelation

0 25 50 75 100 125 150 175 200

6

4

2

0

2

4

ARMA(2,1)

0 10 20 30 40 50

0.2

0.0

0.2

0.4

0.6

0.8

1.0
Autocorrelation

0 10 20 30 40 50

0.50

0.25

0.00

0.25

0.50

0.75

1.00
Partial Autocorrelation

0 25 50 75 100 125 150 175 200
6

4

2

0

2

4

ARMA(2,2)

0 10 20 30 40 50

0.2

0.0

0.2

0.4

0.6

0.8

1.0
Autocorrelation

0 10 20 30 40 50
0.50

0.25

0.00

0.25

0.50

0.75

1.00
Partial Autocorrelation

Figure 9.4. Simulation of different ARMA processes and their respective autocorrelation functions.

§9 Autoregressive models with moving average 113

uncorrelated white noise and moving through the random walk to the higher order ARMA
processes.

10
Trends and periods: SARIMA models

In practice, especially in economics, time series are not stationary. Therefore the ARMA
models considered so far are basically not suitable for their analysis, unfortunately. Nev-
ertheless, they are not completely unusable. For firstly, they and their properties are quitenon-stationary

models well understood, in particular their order can be well estimated by the methods described
in section 9.3. Secondly, they can be understood as elementary stochastic processes of
more general time series, which we can analyze with this understanding. A class of non-
stationary processes suitable for this purpose are the “integrated” processes that we will
discuss in this chapter.

10.1 Time series with trends: Integrated processes
An ARMA process can be Differentiate to an ARIMA-process can be generalized. Thus,
processes with a trend can now also be represented, i.e. non-stationary time series. In
order to illustrate the idea behind it, we define first the differentiation indexdifferentiation
of a process of the process (𝑌𝑡), actually the difference formation, by

Δ𝑌𝑡 := 𝑌𝑡 − 𝑌𝑡−1. (10.1)

Conversely, with Δ𝑌𝑡 + 𝑌𝑡−1 = 𝑌𝑡 a differentiated process can be “integrated“ back. As an
example, consider the process 𝑌𝑡 = 𝑎 + 𝑏𝑡 + 𝜀𝑡 with a linear trend 𝑏 ≠ 0. Then we have

Δ𝑌𝑡 = 𝑌𝑡 − 𝑌𝑡−1 = 𝑎 + 𝑏𝑡 + 𝜀𝑡 − (𝑎 + 𝑏(𝑡 − 1) + 𝜀𝑡−1) = 𝑏 + 𝜀𝑡 − 𝜀𝑡−1.

Then the differentiated process (Δ𝑌𝑡) in general is not centered, but the trend has disap-
peared. If one differentiates a process (𝑌𝑡) twice,

Δ2𝑌𝑡 = Δ(Δ𝑌𝑡) = Δ(𝑌𝑡 − 𝑌𝑡−1) = Δ𝑌𝑡 − Δ𝑌𝑡−1 = 𝑌𝑡 − 𝑌𝑡−1 − (𝑌𝑡−1 − 𝑌𝑡−2)
= 𝑌𝑡 − 2𝑌𝑡−1 + 𝑌𝑡−2, (10.2)

then a quadratic trend is filtered out of the time series. Accordingly, by further differenti-
ation one can remove higher nonlinear trends from the process.

Definition 10.1. Let 𝑑 ∈ N0 be a non-negative integer. A stochastic process (𝑌𝑡) is called
an ARIMA(𝑝, 𝑑, 𝑞) process if 𝑌 ′

𝑡 = (Δ𝑑𝑌𝑡) is a causal ARMA(𝑝, 𝑞) process. In otherARIMA(𝑝, 𝑑, 𝑞)

114

§10 Trends and periods: SARIMA models 115

words, an ARIMA(𝑝, 𝑑, 𝑞) process satisfies the model equation

𝑌 ′
𝑡 −

𝑝∑︁
𝑘=1

𝜑𝑘𝑌
′
𝑡−𝑘 = 𝜀𝑡 +

𝑞∑︁
𝑖=1

𝜃𝑖𝜀𝑡−𝑖 mit 𝑌 ′
𝑡 = Δ𝑑𝑌𝑡 , (10.3)

where we have 𝜀𝑡 ∼ WN(0, 𝜎2
𝜀), as well as 𝜑𝑝 and 𝜃𝑞 ≠ 0, and where the charcteristic

polynomials Φ𝑝 und Θ𝑞 of the AR and MA part, defined respectively according to (8.8)
and (9.6), donot share common zeros.

The “I” in the artificial word ARIMA appears because a 𝑑-fold integrated ARMA(𝑝, 𝑞)
process is exactly an ARIMA(𝑝, 𝑑, 𝑞) process. An ARIMA proprocess (𝑌𝑡) also satisfies
the model equation (9.7) of an ARMA process, with Φ𝑝 (𝑧) (1 − 𝑧)𝑑 as its characteristic
polynomial and the corresponding modified coefficients 𝜑𝑘 .

Example 10.2. The simplest example of an ARIMA process not being an ARMA process
is the random walk: It is created by differentiating once from the ARMA(0,0) process

0 20 40 60 80 100
0.01

0.00

0.01

0.02

0.03

AR(1), =1, =0.0035

0 20 40 60 80 100
0.0100

0.0075

0.0050

0.0025

0.0000

0.0025

0.0050

0.0075

0.0100
WN(0,0.0035)

Figure 10.1. A random walk and its differentiated process

𝑌𝑡 = 𝜀𝑡 , thus according to example 7.3 from the white noise, for

Δ𝑌𝑡 = 𝑌𝑡 − 𝑌𝑡−1 = 𝜀𝑡 ⇐⇒ 𝑌𝑡 = 𝑌𝑡−1 + 𝜀𝑡 . (10.4)

cf.Figure 10.1. The random walk is therefore an ARIMA(0,1,0) process, its integrated
process is the white noise. □

10.2 Approach to trends
To a given time series, which may not be considered stationary because of an obviously
contained trend, a ARIMA(𝑝, 𝑑, 𝑞) model is to be fitted. Before we now have to worry
about the orders 𝑝 and 𝑞, we first have to solve the problem of choosing the integration
order 𝑑. For this purpose, it is advisable to differentiate the time series as long until no
trend can be recognized. If after a single difference formation a stationary process already
is obtained — which is often the case with economic time series — the original process
is called integrated, or also differential stationary.

Caution is advised, however, when differentiating because both too large and too small
𝑑 makes further analysis with an ARMA model impossible. If one chooses the order 𝑑
too small, the 𝑑-fold differentiation leads to a process which is is not (yet) stationary. An
non-stationary stochastic process, which in fact satisfies the ARMA model equation (9.7),
but whose AR polynomial has has a unit root, is sometimes difficult or even impossible

116 Andreas de Vries: Machine Learning

to recognize in the time series plot as being non-stationary. To objectify the choice of 𝑑,
so-called unit root tests have been developed, with which one can investigate the question tests for unit

roots in AR
processeswhether the AR polynomial Φ𝑝 has unit roots. Such tests are used, e.g., in computer

programs for the automatic determination of the order 𝑑 in the search for a suitable
ARIMA model. The two most known representatives are the ADF test and the KPSS-Test.

If one differentiates an ARMA process that is stationary, then again a stationary
process is obtained. However, this “overdifferentiated” process then has a unit root in theoverdifferentia-

tion MA polynomial and is therefore not invertible. Testing for root 1 in the characteristic
polynomial of an MA model is much more difficult than for the AR model. However, fortests for unit

roots in MA
processes the simple MA(1) model

𝑌𝑡 = 𝜀𝑡 + 𝜃1𝜀𝑡−1 mit 𝜀𝑡 ∼ IID(0, 𝜎2
𝜀)

there exists a test of Davis, Chen und Dunsmuir: Under the null hypothesis 𝐻0 : 𝜃1 = 1
the random variables 𝑛(𝜃1 − 1) of the maximum likelihood estimator 𝜃1 for 𝜃1 converge,
and for the marginal distribution 𝛼-quantiles are given. The null hypothesis that there is
a unit root is rejected in favor of the alternative 𝐻1 : 𝜃1 < 1 to the significance level 𝛼
if 𝜃1 < 1 − 𝑐𝛼/𝑛 holds. The most common quantiles are 𝑐0,01 = 11,93, 𝑐0,05 = 6,80 und
𝑐0,1 = 4,90.1

10.3 SARIMA

Besides trends, there is another important deterministic part in real processes, namely
periodic recurring effects. Such effects are also called seasonal in the economic field.seasonal

effects Sales figures, for instance, are shaped by regular events, such as seasons or certain hol-
idays like Christmas or Easter. To account for seasonal effects in time series analysis,
an ARIMA(𝑝, 𝑑, 𝑞) model is augmented by the four parameters (𝑃, 𝐷,𝑄)𝑠, which re-
spectively account for seasonal AR effects for period 𝑠 of a season with 𝑃, seasonal
MA effects with 𝑄, and seasonal integration effects with 𝐷. In the literature, the en-(𝑝, 𝑑, 𝑞) ×

(𝑃, 𝐷, 𝑄)𝑠 tire model is denoted SARIMA (for “seasonal ARIMA model”) with seven parameters
(𝑝, 𝑑, 𝑞) × (𝑃, 𝐷,𝑄)𝑠.

Definition 10.3. A stochastic process (𝑌𝑡) is called SARIMA(𝑝, 𝑑, 𝑞) × (𝑃, 𝐷,𝑄)𝑠 with
the parameters 𝑝, 𝑑, 𝑞, 𝑃, 𝐷, 𝑄, 𝑠 ∈ N0, if it satisfies the following model equation:

𝑦′𝑡 =

𝑝∑︁
𝑖=1

𝜑𝑖𝑦
′
𝑡−𝑖︸ ︷︷ ︸

AR

+ 𝜀𝑡 +
𝑞∑︁
𝑖=1

𝜃𝑖𝜀𝑡−𝑖︸ ︷︷ ︸
MA

+
𝑃∑︁
𝑖=1

𝜑̃𝑖𝑦
′
𝑡−𝑠−𝑖︸ ︷︷ ︸

seasonal AR

+
𝑄∑︁
𝑖=1

𝜃𝑖𝜀𝑡−𝑠−𝑖︸ ︷︷ ︸
seasonal MA

(10.5)

with the differentiated process
𝑦′𝑡 = Δ𝑑Δ𝐷𝑠 𝑦𝑡︸ ︷︷ ︸

(seasonal) I

, (10.6)

and the relations

1cf. Vogel (2015):pp. 124–125.

§10 Trends and periods: SARIMA models 117

𝑦𝑡 – observational data at time 𝑡,
𝑠 – period of a season (e.g., 12 for monthly data, 4 for quaterly data)
𝑝, 𝑃 – order of the autoregression = lag

= number of the autoregressive terms,
𝑑, 𝐷 – order of the differnce formation Δ𝑑 (Δ𝑦𝑡 = 𝑦𝑡 − 𝑦𝑡−1, Δ2𝑦𝑡 = ΔΔ𝑦𝑡 , ...)

= number of differences to acieve stationarity
𝑞, 𝑄 – order of the moving average of the noise terms

(Capital letters here denote the seasonal portion in each case). Here the characteristic
polynomials

Φ𝑝 (𝑧) = 1−
𝑝∑︁
𝑖=1

𝜑𝑖𝑧
𝑖, Θ𝑝 (𝑧) = 1+

𝑞∑︁
𝑖=1

𝜃𝑖𝑧
𝑖, Φ̃𝑝 (𝑧) = 1−

𝑃∑︁
𝑖=1

𝜑̃𝑖𝑧
𝑖+𝑠, Θ̃𝑝 (𝑧) = 1+

𝑄∑︁
𝑖=1

𝜃𝑖𝑧
𝑖+𝑠 (10.7)

do not share common zeros, respectively.

In practice, the polynomial degrees 𝑝, 𝑞, 𝑃,and 𝑄 will not be greater than 2. For the
prediction of economic time series, most commonly SARIMA(𝑝, 𝑑, 𝑞) × (0, 1, 1)𝑠 models
with 𝑝 + 𝑑 + 𝑞 ≦ 4 are used. The SARIMA(0, 1, 𝑠 + 1) × (0, 1, 0)𝑠-model is equivalent to
the additive Holt-Winters method of seasonal exponential smoothing, which is used, for
example, in logistics for inventory optimization2.

0 25 50 75 100 125 150 175 200

0

5

10

15

20

ARIMA(2,1)

0 10 20 30 40 50

0.5

0.0

0.5

1.0
Autocorrelation

0 10 20 30 40 50

0.2

0.0

0.2

0.4

0.6

0.8

1.0
Partial Autocorrelation

0 25 50 75 100 125 150 175 200

0

10

20

30

40

50
SARIMA(2,1)

0 10 20 30 40 50

0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

Autocorrelation

0 10 20 30 40 50

0.2

0.0

0.2

0.4

0.6

0.8

1.0
Partial Autocorrelation

Figure 10.2. Simulation of different SARIMA processes and their autocorrelation functions. Both
processes are non-stationary.

10.4 SARIMA models in statsmodels

The central class for general SARIMA-Modelle in the library statsmodels is SARIMAX

https://www.statsmodels.org/stable/generated/statsmodels.tsa.statespace.

sarimax.SARIMAX.html

in the module sarimax. It can be imported by the instruction

from statsmodels.tsa.statespace.sarimax import SARIMAX

https://www.statsmodels.org/stable/generated/statsmodels.tsa.statespace.sarimax.SARIMAX.html
https://www.statsmodels.org/stable/generated/statsmodels.tsa.statespace.sarimax.SARIMAX.html

118 Andreas de Vries: Machine Learning

Necessary parameter for the creation of a SARIMAX instance is endog for the time series
to be modeled. The time series can be a numeric array, but a Pandas Series, too, is Pandas Series

possible and usually recommended. The advantage of a Pandas Series is that the points
in time of the time series values can also be stored in date or time formats and the type of
measurement period (freq) can be specified. For example, the statements

y = pd.Series([1000, 2500, 500, 3000])

y.index = pd.DatetimeIndex(

["2020-01-01", "2020-04-01", "2020-07-01", "2020-10-01"],

freq='QS-JAN')

generate the time series

2020-01-01 1000

2020-04-01 2500

2020-07-01 500

2020-10-01 3000

Freq: QS-JAN, dtype: int64

the measurement dates of which occur quarterly from January 1 on ("QS-JAN"). The
possible strings for the date offset are listed under the URL

https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#

dateoffset-objects

Q1
2020

Q2 Q3 Q4
500

1000

1500

2000

2500

3000

Figure 10.3. Plot of a trajectory of a time series stored as a Pandas Series

Common values are "D" for daily time data, "M" and "MS" for monthly data at the first or last
of the month, respectively, "Q" and "QS" for quarterly data at the beginning or end of the
month, and "AS" and "A" for annual data at the beginning or end of the year, respectively.
With the plot command y.plot(), this will plot the time series trajectory in Figure 10.3.

10.5 Parameters to generate a SARIMAX model
The order of the model is determined by the parameter order, expecting a tuple (𝑝, 𝑑, 𝑞)order

of three numbers. Furthermore, the seasonal component (𝑃, 𝐷, 𝑄)𝑠 is determined by the
parameter seasonal_order with a tuple (𝑃, 𝐷, 𝑄, 𝑠) of four numbers. The given defaultseasonal_order

values of the two parameters are order = (1, 0, 0) and seasonal_order = (0,0,0,0),
i.e., the model represents an AR(1) process.

https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#dateoffset-objects
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#dateoffset-objects

§10 Trends and periods: SARIMA models 119

Another optional parameter that is very useful in practice is trend, which determines
the deterministic trend polynomial 𝐴(𝑡) on which the time series is based. It can eithertrend

be one of the four strings 'n', 'c', 't', 'ct' or a list [𝑒0, 𝑒1, . . . , 𝑒𝑘] of zeros and ones,
𝑒𝑖 ∈ {0, 1}. The strings cause no trend at all, a constant trend, a trend linear in 𝑡, or a linear
and constant trend to be applied. A list [𝑒0, 𝑒1, . . . , 𝑒𝑘] of zeros and ones determines the
non-vanishing terms of the applied polynomial, i.e. 𝐴(𝑡) = ∑𝑘

0 𝑒𝑖𝑎𝑖𝑡
𝑖. For example, the

list [1, 1, 0, 1] leads to the applied trend polynomial 𝐴(𝑡) = 𝑎0 + 𝑎1𝑡 + 𝑎3𝑡
3.

10.6 Fitting a SARIMAX model
The most important method of SARIMAX is fit(). As usual in machine learning, it fits
the parameters of the model to the observed data . In contrast to the principle implemented fit()

in Scikit-Learn that a new model is created from a model after fitting, which can be used
to modify the dataset and thus fit another model, the fit() method in statsmodels creates
as a result an instance of a new class, the class MLEResults3. In the documentation of
statsmodel4 it is recommended accordingly to assign the result to an own variable, as for
instance

1 from statsmodels.tsa.statespace.sarimax import SARIMAX

2 model = SARIMAX(y, order=(2,0,0), trend='ct')

3 result = model.fit()

However, in order to take up and continue one of the basic ideas of machine learning, in
these lecture notes the result of fitting the model parameters is stored in the variable of
the model itself, like in the example in line 3 the variable model. Of course, this slight
abuse of notation is justified only in the author’s subjective trade-off against the fact that
the unfitted model normally has no further use. If you rate this consideration differently,
you can — and should — of course follow the recommendation of the documentation of
statsmodels for your programs.

10.7 Predictions of a SARIMAX model
In statsmodels a basic distinction is made between the two terms predict and forecast.
While predict mainly denotes the performance of a so-called in-sample prediction, i.e., a in-sample pre-

dictionreproduction of predictive values of the fitted model provided in a temporal window from
the sample area, forecasting is understood as the true prediction of the model for a temporal
range from the future of the sample, called out-of-sample forecasting. Accordingly, there out-of-sample

forecastingare two methods for a fitted time series model, predict and forecast.3
However, the more flexible method of a fitted SARIMAX model for calculating a

forecast here is predict, because it actually allows for both in-sample prediction and out-
of-sample forecasting. The two important parameters are of predict are start and end, predict()

which determine the indexes of start and end time of the prediction related to the sample
𝑦, so for 𝑛0 and 𝑛𝑘 for example.

pred = model.predict(start=𝑛0, end=𝑛𝑘)

2Katzenberger (2013).
3 https://www.statsmodels.org/dev/generated/statsmodels.tsa.statespace.mlemodel.MLEResults.

html

4https://www.statsmodels.org/stable/examples/notebooks/generated/statespace_sarimax_stata.

html

https://www.statsmodels.org/dev/generated/statsmodels.tsa.statespace.mlemodel.MLEResults.html
https://www.statsmodels.org/dev/generated/statsmodels.tsa.statespace.mlemodel.MLEResults.html
https://www.statsmodels.org/stable/examples/notebooks/generated/statespace_sarimax_stata.html
https://www.statsmodels.org/stable/examples/notebooks/generated/statespace_sarimax_stata.html

120 Andreas de Vries: Machine Learning

Both parameters are optional, their default values are start=0 and end=𝑚, where𝑚 denotes
the last index of the sample 𝑦. In other words, in this case in-sample prediction is performed
over the entire sample.

To compute a pure out-of-sample forecasting, the method forecast can also be called,
which requires as parameter steps only the number of forecast values into the future afterforecast()

the last value of the sample. The parameter is optional, but default value is 0, i.e., no
prediction is made at all. In practice, one will use this method only if an out-of-sample
prediction is wanted, for most cases predict will be applicable.

The values for the parameters start, end and step do not have to be integer values, but
can also be of type datetime.

10.8 Choosing a SARIMA model
Given a time series, its analysis is generally a complex procedure, as in machine learning
in general, and is individually dependent on the data at hand. Here we will not clearly
define a proceeding, but rather a collection of heuristic rules of thumb. Nevertheless, the
following steps are generally accepted as a rough guide to action of a time series analysis5.

1. Data import: Read the data as a Pandas DataFrame, analyze its structure, and
preprocess the data if necessary.

2. First Visualization: Plot the trajectory of the time series.

3. Rough data analysis: Preliminarily categorize the time series, possibly transform
the data.

4. Determination of the hyperparameters: Estimate the order parameters (𝑝, 𝑑, 𝑞, (𝑃,
𝐷, 𝑄)𝑠).

5. Diagnosis: Evaluate the model with statistical key figures, go back to step 3 or 4, if
necessary.

6. Determination of the model: Select the model that is evaluated best.

The first step is to import the data into a program. Indeed, Python Pandas is aware of
the mostly available data formats, e.g., text-based CSV files (extension .csv or often also
xls), SPSS (.sav). Often, however, the data are in a structure that must first be modified
as part of preprocessing to yield a processable time series, or processable time series,
respectively.

As with almost any data analysis, we should first create the trajectory of the time series
as a function graph to get a first impression. Are the values increasing or periodic? Is
there a trend? Are the fluctuations around the trend always about the same? Especially to
stabilize the variances, a Box-Cox-Transformation with the parameter 𝛼 ≧ 0 can be used:

𝑦𝑡 ↦→ 𝑦 (𝛼)𝑡 =

{
log 𝑦𝑡 für 𝛼 = 0,
1
𝛼 (𝑦𝛼𝑡 − 1) für 𝛼 ≠ 0. (10.8)

The most common one is the logarithmic transformation (𝛼 = 0), where usually the base
of the logarithm does not matter for the analysis. It is often applied to growth processes.

5Shumway and Stoffer (2017):p. 135ff.

https://docs.python.org/3/library/datetime.html

§10 Trends and periods: SARIMA models 121

10.9 Problems
Problem 10.1. (a) Under the link https://fred.stlouisfed.org/series/GDPC1 one can
obtain the historical U.S. real gross domestic product data from March 1947 to April 1978
mentioned in Example 8.1. The data are available as quarterly data as of April 1, July 1,
October 1, and January 1, respectively. Write a Python program in which the data are read
and stored as Pandas Series and plot the time series.

(b) Apply an AR(2) model using SARIMAX with linear trend to the time series as
training data for the first 70 % of the time series values.

(c) Compute the forecast for the last 30 % of the time series values as test data and
plot it using a panda Data frame together with the trajectory of the entire time series (i.e.,
training and test data).

https://fred.stlouisfed.org/series/GDPC1

A
Appendix

A.1 Solutions to selected problems
Problem 1.1 (a) A random variable 𝑋 on a sample space Ω is a mapping 𝑋 : Ω → R.
(Actually the topic of this part of the problem is less a question about random variables
than about the mathematical notation of a mapping between two sets!)

(b) The table of values of the random variable 𝑋 reads:

dots 𝜔 1 2 3 4 5 6
𝑋 (𝜔) 0 1 0 1 0 1

Since the probability of each outcome equals 1
6 , we have 𝑃(𝑋 = 1) = 𝑃(2) +𝑃(4) +𝑃(6) =

1
6 + 1

6 + 1
6 = 1

2 . The implicit assumption made by this deduction is that the six outcomes are
uniformly probable, i.e., that each occurs with the probability 1

6 . (This part of the problem
thus more deals with the formal derivation than with the – intuitively “somehow logical”
– result: Every random variable assigns a real number to each outcome 𝜔 ∈ Ω; but we can
determine the probability distribution only if we know the probabilities of the outcomes.)

Problem 2.1 We first have to associate the three statements to their respective roles of
inference, i.e., rule, premise, and conclusion:

Rule 𝐴⇒ 𝐵: “When it rains, the street is wet”
Premise 𝐴: “It rains”
Conclusion 𝐵: “The street is wet”

Therefore,

Deduction Induction Abduction
When it rains, the street is wet
It rains
The street is wet

It rains
The street is wet
When it rains, the street is wet

When it rains, the street is wet
The street is wet
𝐻1: It rains
𝐻2: It does not rain.
𝐻3: The street is sprayed.
𝐻1: It rains

122

§A Appendix 123

(Here the third hypothesis 𝐻3 of course is only exemplary.)

Problem 2.2 We have 𝑃(𝑋 | 𝐴) = 1
3 · (2

3)4 and 𝑃(𝑋 | 𝐵) = 2
3 · (1

3)4. Let formally 𝑀1 = 𝐴
denote the model that the coin 𝐴 is chosen, and 𝑀2 = 𝐵 that coin 𝐵 is chosen, respectively.
Assuming that the prior probabilities of each model is equal,

𝑃(𝐴) = 𝑃(𝐵) = 1
2

we obtain by Equation (2.8) the probability ratio

𝑃(𝐴 | 𝑋)
𝑃(𝐵 | 𝑋) =

𝑃(𝑋 | 𝐴)
𝑃(𝑋 | 𝐵) ·

𝑃(𝐵)
𝑃(𝐴) =

𝑃(𝑋 | 𝐴)
𝑃(𝑋 | 𝐵) =

1
3 · (2

3)4

2
3 · (1

3)4
=

1 · 24

2 · 14 = 23 = 8, (A.1)

in favor of type 𝐴.

Problem 4.1
Literal Valid Result / Explanation
1.000e-0.2 no exponent after e must be an integer
2e+1j yes 20j, a purely imaginary number
0x567 yes 1383, hexadecimal representation
00x567 no Literals for hexadecimal numbers must have precisely one

leading zero
0o567 yes 375, octal representation
0o568 no 8 is not an octal symbol
'Größe' yes ’Größe’, string with Unicode symbols
''Größe'' no Two apostrophs '' define an empty string
"Größe" yes ’Größe’, string with Unicode symbols
b'Größe' no Bytes can only contain ASCII symbols
"Komm 'rein!" yes A string in quotation marks may contain apostrophs – and

vice versa
00023e001 yes 230.0, floating-point number; mantissa and exponent must

be integers, but may have leading zeros and are interpreted
as decimal numbers

(1; 2; 3) no Round brackets define tuples, the entries of which must be
separated by commas

Problem 4.2
Object of Reality Data Type Exemplary Expression
radius of atoms float 3.2e-13

name of flower string (str) 'Tulpe'

name of participants of a race list or set of Strings ['Leonie', 'Stephanie', 'Alina']

or {'Leonie', 'Stephanie', 'Alina'}

score of a soccer match (e.g., 3:1) tuple of two integers (3,1)

name, prename and age of a per-
son

tuple with three entries ('Schmitz', 'Otto', 24)

name, prename and age of a par-
ticipant of a race

a list of tuples [('Meier', 'Leonie', 23),

('Müller', 'Stephanie', 21),

('Schmitz', 'Alina', 24)]

table, in which the chemical ele-
ment symbols are stored with their
English and German names (e.g.,
H → hydrogen, Wasserstoff)

dictionary with sym-
bols as keys and a list
of English and Ger-
man notions as values

{'H': ['hydrogen','Wasserstoff'],

'O': ['oxygen','Sauerstoff'],

'C': ['carbon', 'Kohlenstoff']}

124 Andreas de Vries: Machine Learning

Problem 4.3 Assuming the alphabet 'abc' we obtain the output of all words with two
letters as follows:

alphabet = 'abc'

for a in alphabet:

for b in alphabet:

print(a+b, end=' ')

With the parameter end the print method does not terminate with a line break ('\n') but
with a blank space (' ').

Problem 4.4 (a) For 𝑛 elements the total number of 𝑘-digit combinations is 𝑛𝑘 . Since here
the number of base pairs is 𝑛 = 4 and the number of digits is 𝑘 = 4, the total number of
combinations is 𝑛𝑘 = 44 = 256.

(b) To print all 256 four-digit combinations of the base pairs AT, TA, GC and CG, it is
appropriate in Python to firts define a list of four pairs as strings and then to run through
a nested loop of depth four:

Print out all DNA sequences with the four base pairs

base_pairs = ['AT', 'TA', 'GC', 'CG']

for a in base_pairs:

for b in base_pairs:

for c in base_pairs:

for d in base_pairs:

print(a, b, c, d)

Problem 4.5 The descreption of the random function randint, as given under

https://numpy.org/devdocs/reference/random/generated/numpy.random.randint.html,

reads numpy.random.randint(low, high=None, size=None, dtype=int): it expects the
value low mandatorily; if high is not set, a random number is returned from the in-
tervall [0, low), otherwise from the intervall [low, high). Then a solution may look
like:

from numpy.random import randint

import time

print('Multiplication trainer')

print('----------------------')

start = time.time()

for i in range(5):

m = randint(1,10)

n = randint(1,10)

result = 0 # can never be a product of positive numbers

while result != m*n:

result = int(input(str(m) + '*' + str(n) + '='))

if result == m*n:

print('Correct!')

else:

print('Unfortunately wrong! Try again ...')

end = int(time.time() - start)

print('For the tasks you needed', end, 'seconds.')

https://numpy.org/devdocs/reference/random/generated/numpy.random.randint.html

§A Appendix 125

Problem 4.6 (a) The function randn(𝑑1, 𝑑2, . . . , 𝑑𝑛) of the module numpy.random, accord-
ing to the API https://numpy.org/devdocs/reference/random/generated/numpy.random.
randn.html, generates one or several standard normally distributes samples as an array
of dimension 𝑛 (or expressed geometrically ausgedrückt: a “tensor of order 𝑛”). If no
parameter is inputted, a random number 𝑧 ∈ R (an array of dimension 0) is returned, for
an input of one parameter an array (“tensor of order 1”) of length 𝑑1, for two parameters
a matrix as an array consisting of 𝑑1 Arrays of length 𝑑2 (i.e., 𝑑1 × 𝑑2), etc. For instance,

np.random.randn(3)

generates an array with three random numbers, say

[0.94759771,0.1613764, -0.25537882]

whereas

np.random.randn(2,3)

generates an array of random arrays with 3 entries, say:

[[0.24416202, 0.67809254, -0.15421969],

[-1.19499275, 0.15050603, -1.84171316]]

(b) If we want to achieve a random sequence the mebers of which are distributed
accordinhg to a normal distribution 𝑁 (𝜇, 𝜎) with mean 𝜇 and standard deviation 𝜎, we
apply:

sigma * np.random.randn(...) + mu

(c) With (a) and (b) a program to generate an error bar diagram with a𝑁 (0, 𝜎)-normally
distributed random array with standard deviation 𝜎 = 0,001 · max

𝑓 ∈[0,∞)
{𝐵(𝑓 , 2,75)} reads

like:

1 import numpy as np

2 import matplotlib.pyplot as plt

3 from numpy import exp

4 from scipy.constants import pi, h, c, k

5

6 def planck(f,T):

7 return 2 * h * f**3 / (c**2 * exp(h*f / (k*T)) - 1)

8

9 n = 67

10 x = np.linspace(0, 7e11, n)

11 y = planck(x, 2.75)

12 sigma = 0.001 * max(y)

13 e = sigma*np.random.randn(n)

14

15 plt.errorbar(x, y, yerr=e)

16 plt.show()

For an error bar diagramm with 𝜎 = 0,01 · max
𝑓 ∈[0,∞)

{𝐵(𝑓 , 2,75)} line 12 must be modified:

sigma = 0.01 * max(y)

(or 1e-2 instead of 0.01), and for 𝜎 = 0,1 · max
𝑓 ∈[0,∞)

{𝐵(𝑓 , 2,75)}:

sigma = 0.1 * max(y)

https://numpy.org/devdocs/reference/random/generated/numpy.random.randn.html
https://numpy.org/devdocs/reference/random/generated/numpy.random.randn.html

126 Andreas de Vries: Machine Learning

Problem 5.1 Following the example of the case study from section 5.4.4 the program
could look like as follows.
1 %matplotlib inline

2 import pandas as pd

3 import numpy as np

4 import matplotlib.pyplot as plt

5 from scipy.optimize import curve_fit

6
7 #===

8 daten = pd.read_csv("datasets/semiconductor-electron-mobility.csv", sep="\t")

9 #===

10
11 x = np.c_[daten["x"]].ravel() # extracts feature values as a column vector

12 y = np.c_[daten["y"]].ravel() # extracts feature values as a column vector

13
14 plt.scatter(x,y)

15 plt.show()

16
17 def f(x,t0,t1,t2,t3,t4,t5,t6):

18 return (t0 + t1 * x + t2 * x**2 + t3 * x**3) / (1 + t4 * x + t5 * x**2 + t6 * x**3)

19
20 coefs, cov = curve_fit(f, x, y, p0=(1000,1000,400,40,1,0.5,0.05))

21 y_pred = f(x, *coefs) # model predictions

22 print("Fitted coefficients:", [round(t,3) for t in coefs])

23
24 xs = np.linspace(min(x), max(x), 100) # take 100 points for a smooth regression line ...

25 plt.scatter(x, y)

26 plt.plot(xs, f(xs, *coefs), 'red')

27 plt.show()

28
29 # Model evaluation:

30 from sklearn.metrics import r2_score

31 R2 = r2_score(y, y_pred)

32 print("R2 =", f"{R2:.3%}")

33
34 def bic(e, k):

35 return np.log(np.var(e)) + k*np.log(len(e))

36 print("BIC =", f"{bic(y - y_pred, len(coefs)):.0f}")

Results: The Python curve_fit solves this problem classified as difficult. Especially, we
obtain 𝑅2 = 99.951%, BIC = 30. That is, the coefficient of determination is rather well,
the value of the BIC is meaningful only in comparison to another model.

Problem 5.2 Following the example of the case study from section 5.4.4 the program
could look like as follows.
1 %matplotlib inline

2 import numpy as np

3 from scipy.optimize import curve_fit

4 import matplotlib.pyplot as plt

5
6 # 1. Import data as a Pandas DataFrame, preprocess them for scipy curve_fit, and plot them:

7 df = pd.read_csv("./datasets/advertizing-and-sales.csv", sep='\t') features = ["Advertizing expenses"]

8 target = "Sales volume" # dependent variable

9 X = np.c_[df[features]].ravel() # extracts feature values as a column vector

10 y = np.c_[df[target]].ravel() # extracts target values as a column vector

11
12 plt.scatter(X, y)

13 plt.show()

14
15 # 2. Curve fit:

16 def f1(x,a,b) : return a + b*x

17 def f2(x,a,b) : return a + b*np.sqrt(x)

18 def f3(x,a,b,c): return a + b*x**c

19 def f4(x,a,b,c): return a + b*np.exp(c*x)

20 coefs1, cov1 = curve_fit(f1, X, y)

21 coefs2, cov2 = curve_fit(f2, X, y)

22 coefs3, cov3 = curve_fit(f3, X, y, p0=(1,1,0.1))

23 coefs4, cov4 = curve_fit(f4, X, y, p0=(1,-1,0.05))

24
25 # 3. Output model parameters:

26 print("Coefficients of models:")

§A Appendix 127

27 print(" linear:", [round(t,2) for t in coefs1])

28 print(" square root:", [round(t,2) for t in coefs2])

29 print(" power:", [round(t,2) for t in coefs3])

30 print(" exponential:", [round(t,2) for t in coefs4])

31
32 # 4. Plot data and regression curves:

33 xp = np.linspace(min(X), max(X), 100) # take 100 points for smooth regression lines ...

34 plt.scatter(X, y)

35 plt.plot(xp, f1(xp, *coefs1), label="linear model")

36 plt.plot(xp, f2(xp, *coefs2), label="square root model")

37 plt.plot(xp, f3(xp, *coefs3), label="power model")

38 plt.plot(xp, f4(xp, *coefs4), label="exponential model")

39 plt.legend()

40 plt.show()

41
42 # 4 Evaluate models

43 # 4.1 Cofficients of determination:

44 from sklearn.metrics import r2_score

45 R2_1 = r2_score(y, f1(X, *coefs1))

46 R2_2 = r2_score(y, f2(X, *coefs2))

47 R2_3 = r2_score(y, f3(X, *coefs3))

48 R2_4 = r2_score(y, f4(X, *coefs4))

49
50 print("Coefficients of determination")

51 print(

52 " linear:", f"{R2_1:.2%},", "\tsquare root:", f"{R2_2:.2%},",

53 "\tpower:", f"{R2_3:.2%},", "\texponential:", f"{R2_4:.2%}"

54)

55
56 #4.2 BICs:

57 def bic(e, k):

58 return np.log(np.var(e)) + k*np.log(len(e))

59
60 print(

61 " BIC1 =", f"{bic(y - f1(X, *coefs1), len(coefs1)):.1f},",

62 "\t\tBIC2 =", f"{bic(y - f2(X, *coefs2), len(coefs2)):.1f},",

63 "\t\tBIC3 =", f"{bic(y - f3(X, *coefs3), len(coefs3)):.1f},",

64 "\t\tBIC4 =", f"{bic(y - f4(X, *coefs4), len(coefs4)):.1f}"

65)

Note the input of the initial values p0 for the model parameters in lines 22 and 23. The
estimated model parameters and the corresponding coefficients of determination are listed
in the following table.

Model Parameter 𝑹2 BIC
linear: 𝑓 (𝑥) = 112.64 + 6,78 𝑥 𝑅1

2 = 95.31% 10.5
square root: 𝑓 (𝑥) = 31.71 + 49,65

√
𝑥 𝑅2

2 = 98.67% 9.3
power: 𝑓 (𝑥) = 9.55 + 65.79 𝑥0.44 𝑅3

2 = 98.72% 12.0
exponential: 𝑓 (𝑥) = 359,22 − 283,84 e−0,05 𝑅4

2 = 98,82% 11.9

(A.2)

The regression curves of the models are shown in Figure A.1. Results: Thus, the expo-

5 10 15 20 25 30

100

150

200

250

300
linear model
square root model
power model
exponential model

Figure A.1. Regression curves showing the effect of advertising

nential model has the best goodness of fit with a coefficient of determination of 98.82
%. However, if one weighs the complexity of the models against 𝑅2, one can argue with

128 Andreas de Vries: Machine Learning

the BIC – and thus with Occam’s razor – and conclude that, due to the lower number of
parameters, the square root model with the lowest BIC of 9.3 can be considered as the
“best” one.

Problem 7.1 (a)

import numpy as np

import matplotlib.pyplot as plt

def Y1(t, e):

return np.sin(t) + e

def Y2(t, e):

return np.sqrt(t) + e

size = 100

e = np.random.randn(size)

y1 = np.zeros(size)

y2 = np.zeros(size)

for t in range(1,size):

y1[t] = Y1(t,e[t])

for t in range(1,size):

y2[t] = Y2(t,e[t])

fig = plt.figure(figsize=(24,8))

ax1 = fig.add_subplot(121)

ax1.set_title("Y1(t)")

ax1.plot(y1)

ax2 = fig.add_subplot(122)

ax2.set_title("Y2(t)")

ax2.plot(y2)

plt.show()

The function plots are then given as follows:

0 20 40 60 80 100

3

2

1

0

1

2

3

4

Y1(t)

0 20 40 60 80 100

0

2

4

6

8

10

Y2(t)

(b) For 𝑌1, the mean and the standard deviation are constant in each case, i.e., 𝑌1 is
stationary. However, since the mean and the standard deviation of 𝑌2 depend on time, 𝑌2
cannot be stationary. We can see these two findings in the function graphs: 𝑌1 moves in a
corridor between −4 and 4 around its mean, while 𝑌2 shows growth.

§A Appendix 129

(c*) The mean of 𝑓 on the intervall [0, 𝑡] is given approximately for great 𝑡 by

𝜇(𝑡) = 1
𝑡

∫ 𝑡

0
𝑓 (𝜏) d𝜏. (A.3)

The innovation terms 𝜀𝑡 play no role here since they have the mean value zero. For 𝜇1 and
𝜇2 from (b), the following results are obtained

𝜇1(𝑡) = 1
𝑡

∫ 𝑡

0
sin 𝜏 d𝜏 = − cos 𝜏

𝜏

���𝑡
0
=

1 − cos 𝑡
𝑡

→ 0 as 𝑡 → ∞

and
𝜇2(𝑡) = 1

𝑡

∫ 𝑡

0

√
𝜏 d𝜏 =

2
3
√
𝜏

����𝑡
0
=

2
3
√
𝑡 → ∞ as 𝑡 → ∞.

Thus for large values of 𝑡 the mean of the first time series converges to 0, while that of the
second diverges with 𝑂 (√𝑡).
Problem 8.1 (a) An implementation according to the task may look like as follows:
import numpy as np

import matplotlib.pyplot as plt

def AR1(phi1):

size = 1000

e = np.random.randn(size)

y = np.zeros(size)

for t in range(1,size):

y[t] = phi1 * y[t-1] + e[t]

return y

fig = plt.figure(figsize=(24,8))

ax1 = fig.add_subplot(411)

ax1.set_title("AR1(-1)")

ax1.plot(AR1(-1))

ax2 = fig.add_subplot(412)

ax2.set_title("AR1(0.5)")

ax2.plot(AR1(0.5))

ax3 = fig.add_subplot(413)

ax3.set_title("AR1(1)")

ax3.plot(AR1(1.0))

ax4 = fig.add_subplot(414)

ax4.set_title("AR1(1.01)")

ax4.plot(AR1(1.01))

plt.savefig('AR1-processes.pdf')

plt.show()

The otput is depicted in Figure A.2.
(b) For the first three graphs, the mean 𝜇 of the respective time series is zero, the

variance of the second time series is 𝜎2 = 1, and of the third (a random walk) 𝜎2 = 𝑡.
(c) An AR(1) process with |𝜑| < 1 is stationary; with 𝜑 = 1 it is a random walk (example

7.4) and therefore non-stationary with example 8.5; with 𝜑 > 1 it is hyperexponentially
growing or shrinking.

130 Andreas de Vries: Machine Learning

0 200 400 600 800 1000
20

0

20
AR1(-1)

0 200 400 600 800 1000
4

2

0

2

AR1(0.5)

0 200 400 600 800 1000

40

20

0

AR1(1)

0 200 400 600 800 1000
0

25000

50000

75000
AR1(1.01)

Figure A.2. AR(1)-Prozesse mit den Parametern 𝜑 = 0.5, 𝜑 = 1, 𝜑 = 1.01.

Problem 10.1 (a) = steps 1 and 2, (b) = step 3, (c) = steps 4 and 5:
import os, pandas as pd, matplotlib.pyplot as plt

from statsmodels.tsa.statespace.sarimax import SARIMAX

1. Einlesen der CSV-Datei in Pandas:

verzeichnis = "datasets"

datei = "GDPC1.csv" # https://fred.stlouisfed.org/series/GDPC1

df = pd.read_csv(os.path.join(verzeichnis, datei), sep=",")

df.index = pd.DatetimeIndex(df['DATE'], freq='QS-Apr')

del df['DATE']

df.rename(columns = {'GDPC1':'Real GDP'}, inplace=True)

2. Filtern der gewünschten Daten und als Pandas Series speichern:

y = pd.Series(df['1947-04-01':'1978-04-01'][df.columns[0]])

3. Konfigurieren der Trainings und Testdaten:

train_size = int(len(y) * 0.7)

test_size = len(y) - train_size

y_train = y[:y.index[train_size]] # hier als Series

y_test = y[y.index[train_size]:] # hier als Series

4. Modell SARIMA((2, 0, 0) × (0, 0, 0)0) anwenden:

model = SARIMAX(y_train, order=(2,0,0), trend='ct')

model = model.fit()

print(model.summary())

5. Out-of-sample Prognose:

pred = model.predict(start=train_size, end=train_size+test_size-1)

pd.DataFrame({'Real':y,'Prediction':pred}).plot()

plt.show()

Instead of the predict method in step 5, we could have used the forecast method here:
5. Out-of-sample Prognose:

forecast = model.forecast(steps=test_size - 1)

§A Appendix 131

pd.DataFrame({'Real':y,'Forecast':forecast}).plot()

plt.show()

The respective function plots are depicted in Figure A.3. Note that in step 1 the measure-

1949 1954 1959 1964 1969 1974 1979
DATE

2000

3000

4000

5000

6000

Real
Prediction

1949 1954 1959 1964 1969 1974 1979
DATE

2000

3000

4000

5000

6000

Real
Forecast

Figure A.3. Trajectory of the time series and prediction of the test data with predict

(left) or with forecast (right)

ment period could have been set as "QS-Jan", or also "QS-Jul" oder "QS-Oct".

A.2 Heuser about the Samuelson multiplyer
The mathematician Harro Heuser (1927–2011) describes in Chapter 7 “Recursive de-
finitions and inductive proofs. Combinatorics” of his textbook on calculus1 the idea of
Samuelson’s accelerator as an application of the geometric series in economics. Here the
entire section is reproduced in its original wording, in a translation of one of the authors
(de Vries). The term “mark” here denotes the legal currency valid in Germany from June
21, 1948 to December 31, 1998.

Impact of investment on national income
Suppose that the (producing and consuming) members of an economy consistently spend
a fraction 𝑞 (0 < 𝑞 < 1) of their income on consumption goods (𝑞 is the limit propensity
to consume). Now let an entrepreneur make an investment of 𝐾 marks (building a factory,
purchasing machinery, etc.). According to our assumption, the recipients of this amount
(bricklayers, plumbers, machine builders, ...) spend 𝑞𝐾 marks, the recipients of this amount
(secondary recipients) consume 𝑞2𝐾 marks, etc. After the 𝑛-th recipients have spent 𝑞𝑛𝐾
marks, total expenditures in the amount of

𝐾
𝑛∑︁
𝑖=0

𝑞𝑖 = 𝐾
1 − 𝑞𝑛+1

1 − 𝑞 = 𝐾
1

1 − 𝑞 − 𝐾 𝑞𝑛+1

1 − 𝑞 Mark (A.4)

have been made, and by this amount the national income has increased (Samuelson und
Nordhaus (cf. 1995:§24.B)). [...] Thus, because of (A.4), 𝐾/(1 − 𝑞) [for large 𝑛] will
sufficiently well indicate the increase in national income brought about by the initial
investment of 𝐾 marks.

1Heuser (1980):S. 67.

Bibliography

Backhaus, K., B. Erichson, and R. Weiber (2015). Fortgeschrittene Multivariate Anal-
ysemethoden. 3rd ed. Springer Gabler: Berlin Heidelberg. doi: 10.1007/978-3-662-
46087-0.

Backhaus, K. et al. (2016). Multivariate Analysemethoden. 14th ed. Springer Gabler:
Berlin Heidelberg. doi: 10.1007/978-3-662-56655-8.

Bandelow, C. (1989). Einführung in die Wahrscheinlichkeitstheorie. 2nd ed. BI Wis-
senschaftsverlag: Mannheim Wien Zürich.

Bauer, H. (1991). Wahrscheinlichkeitstheorie. 4th ed. Walter de Gruyter: Berlin New York.
Blanchard, O. J. (May 1981). “What is Left of the Multiplier Accelerator?” In: The

American Economic Review 71(2). http://www.jstor.org/stable/1815709, pp. 150–
154.

Bofinger, P. (2007). Grundzüge der Volkswirtschaftslehre. Eine Einführung in die Wissen-
schaft von Märkten. 2nd ed. Pearson Studium: München.

Brandt, S. (1999). Datenanalyse. 4th ed. Spektrum Akademischer Verlag: Heidelberg
Berlin.

Brockwell, P. J. and R. A. Davis (1991). Time Series: Theory and Methods. 2nd ed.
Springer. doi: 10.1007/978-1-4419-0320-4.

— (2016). Introduction to Time Series and Forecasting. 3rd ed. Springer. doi: 10.1007/
978-3-319-29854-2.

Burke, K. D. et al. (2018). “Pliocene and Eocene provide best analogs for near-future
climates”. In: Proceedings of the National Academy of Sciences 115(52), pp. 13288–
13293. issn: 0027-8424. doi: 10.1073/pnas.1809600115.

Büttner, U. (2008). Weimar. Die überforderte Republik 1918–1933. Klett-Cotta: Stuttgart.
Campbell, J. Y., A. W. Lo, and A. C. MacKinlay (1997). The Econometrics of Financial

Markets. Princeton University Press: Princeton.
Cowpertwait, P. S. P. and A. N. Metcalfe (2009). Introductory Time Series with R. Springer:

Dordrecht Heidelberg London New York. doi: 10.1007/978-0-387-88698-5.
de Vries, A. (2020). Netzökonomie Lerneinheit 2. Einführung in das maschinelle Ler-

nen mit Python. Vorlesungsskript. Hagen. url: https : / / fh - swf . sciebo . de / s /

y80tdcBeby5mxow.
Deistler, M. and W. Scherrer (2018). Modelle der Zeitreihenanalyse. Birkhäuser: Cham.

doi: 10.1007/978-3-319-68664-6.
Denis, D. J. (2021). Applied Univariate, Bivariate, and Multivariate Statistics Using

Python: A Beginner’s Guide to Advanced Data Analysis. 2nd ed. Wiley: Hoboken.
isbn: 9781119578147. doi: 10.1002/9781119583004.

Downey, A. B. (2011). Think Stats. Probability and Statistics for Programmers. 1st ed.
Green Tea Press: Needham, Massachusetts. url: https : / / greenteapress . com /

thinkstats/.
Durbin, J. and S. J. Koopman (2012). Time Series Analysis by State Space Methods. 2nd ed.

Oxford University Press: Oxford.

132

https://doi.org/10.1007/978-3-662-46087-0
https://doi.org/10.1007/978-3-662-46087-0
https://doi.org/10.1007/978-3-662-56655-8
http://www.jstor.org/stable/1815709
https://doi.org/10.1007/978-1-4419-0320-4
https://doi.org/10.1007/978-3-319-29854-2
https://doi.org/10.1007/978-3-319-29854-2
https://doi.org/10.1073/pnas.1809600115
https://doi.org/10.1007/978-0-387-88698-5
https://fh-swf.sciebo.de/s/y80tdcBeby5mxow
https://fh-swf.sciebo.de/s/y80tdcBeby5mxow
https://doi.org/10.1007/978-3-319-68664-6
https://doi.org/10.1002/9781119583004
https://greenteapress.com/thinkstats/
https://greenteapress.com/thinkstats/

BIBLIOGRAPHY 133

Felderer, B. and S. Homburg (1989). Makroökonomik und neue Makroökonomik. 4th ed.
Springer-Verlag: Berlin etc.

Feldman, D. R. et al. (2015). “Observational determination of surface radiative forcing
by CO2 from 2000 to 2010”. In: Nature 519(7543), pp. 339–343. doi: 10 . 1038 /

nature14240.
Flach, P. A. and A. C. Kakas, eds. (2000). Abduction and Induction: Essays on their

Relation and Integration. Applied Logic Series. Springer Science+Business Media:
Dordrecht. doi: 10.1007/978-94-017-0606-3.

Géron, A. (2017). Hands-On Machine Learning with Scikit-Learn and TensorFlow.
O’Reilly: Sebastopol.

Goldberg, S. (1958). Introduction to Difference Equations. John Wiley & Sons: New York.
Goswami, A. (1997). Quantum Mechanics. 2nd ed. Wm. C. Brown publishers: Dubuque,

IA.
Handl, A. and T. Kuhlenkasper (2017). Multivariate Analysemethoden: Theorie und Praxis

mit R. 3rd ed. Statistik und ihre Anwendungen. Springer: Berlin, Heidelberg. doi:
10.1007/978-3-662-54754-0.

Hastie, T., R. Tibshirani, and J. Friedman (2009). The Elements of Statistical Learning.
2nd ed. Springer: New York. doi: 10.1007/b94608.

Heisenberg, W. (1948). “Der Begriff »abgeschlossene Theorie« in der modernen Natur-
wissenschaft”. In: Dialectica 2, pp. 331–336.

Heuser, H. (1980). Lehrbuch der Analysis. Teil 1. B.G. Teubner: Stuttgart.
Hull, J. C. (2000). Options, Futures & Other Derivatives. 4th ed. Prentice-Hall Interna-

tional: Upper Saddle River, NJ.
IPCC (Aug. 2021). AR 6 Climate Change 2021. The Physical Science Basis. Cambridge

University Press: Cambridge New York. url: https://www.ipcc.ch/report/ar6/wg1/.
James, G. et al. (2013). An Introduction to Statistical Learning. Springer: New York

Heidelberg Dordrecht London. doi: 10.1007/978-1-4614-7138-7.
Jouzel, J. et al. (Aug. 2007). “Orbital and Millennial Antarctic Climate Variability over

the Past 800,000 Years”. In: Science 317(5839), pp. 793–797. doi: 10.1126/science.
1141038.

Kalvelage, T. (2018). “Chronisten der Erdgeschichte”. In: Spektrum der Wissenschaft 10,
pp. 50–55. url: https://spektrum.de/artikel/1757380.

Katzenberger, M. (2013). Algorithmen zur Losgrößenoptimierung. Vol. 3. Hagener Be-
richte der Wirtschaftsinformatik. Books on Demand: Norderstedt.

Koyré, A. (1992). The Astronomical Revolution. Copernicus – Kepler – Borelli. Dover
Publications: New York.

Krahl, D., U. Windheuser, and F.-K. Zick (1998). Data Mining: Einsatz in der Praxis.
Addison-Wesley-Longman: Bonn. isbn: 9783827313492.

Kreiß, J.-P. and G. Neuhaus (2006). Einführung in die Zeitreihenanalyse. Springer: Berlin
Heidelberg. doi: 10.1007/3-540-33571-4.

Krugman, P. R. and R. E. Wells (2006). Macroeconomics. Worth Publishers: New York.
Kuhn, T. S. (1962). The Structure of Scientific Revolutions. University of Chicago Press:

Chicago.
MacKay, D. (2003). Information Theory, Inference, and Learning Algorithms. Cambridge

University Press: Cambridge.
Mitchell, T. M. (1997). Machine Learning. McGraw-Hill. isbn: 9780071154673.
Murphy, J. J. (2016). Technische Analyse der Finanzmärkte. FinanzBuch Verlag: München.
Murphy, K. P. (2012). Machine Learning. A Probabilistic Perspective. MIT Press: Cam-

bridge London.

https://doi.org/10.1038/nature14240
https://doi.org/10.1038/nature14240
https://doi.org/10.1007/978-94-017-0606-3
https://doi.org/10.1007/978-3-662-54754-0
https://doi.org/10.1007/b94608
https://www.ipcc.ch/report/ar6/wg1/
https://doi.org/10.1007/978-1-4614-7138-7
https://doi.org/10.1126/science.1141038
https://doi.org/10.1126/science.1141038
https://spektrum.de/artikel/1757380
https://doi.org/10.1007/3-540-33571-4

134 Andreas de Vries: Machine Learning

Neusser, K. (2011). Zeitreihenanalyse in den Wirtschaftswissenschaften. 3rd ed. Vieweg
+ Teubner: Wiesbaden. doi: 10.1007/978-3-8348-8653-8.

Ng, A. and K. Soo (2018). Data Science – was ist das eigentlich?! Algorithmen des
maschinellen Lernens verständlich erklärt. Springer: Berlin. doi: 10.1007/978-3-662-
56776-0.

O’Neill, B. C. et al. (2017). “The roads ahead: Narratives for shared socioeconomic
pathways describing world futures in the 21st century”. In: Global Environmental
Change 42, pp. 169–180. issn: 0959-3780. doi: 10.1016/j.gloenvcha.2015.01.004.

Palma, W. (2016). Time Series Analysis. Wiley: Hoboken.
Penrose, R. (2004). The Road to Reality. Vintage Books: New York.
Pole, A., M. West, and J. Harrison (1994). Applied Bayesian Forecasting and Time Series

Analysis. Chapman & Hall: New York.
Pourret, O., P. Naim, and B. Marcot, eds. (2008). Bayesian Networks. A Practical Guide

to Applications. John Wiley & Sons: Chichester.
Rinne, H. and K. Specht (2002). Zeitreihen. Statistische Modellierung, Schätzung und

Prognose. Vahlen: München.
Rotmans, J. et al. (2000). “Visions for a sustainable Europe”. In: Futures 32(9–10), pp. 809–

831. url: https : / / www . pik - potsdam . de / ateam / avec / peyresq2003 / internal /

articles_pdf/europe_scenarios.pdf.
Russell, S. J. and P. Norvig (2022). Artificial Intelligence. A Modern Approach. Pearson:

Harlow.
Samuelson, P. A. (1939). “Interactions between the Multiplier Analysis and the Principle

of Acceleration”. In: The Review of Economics and Statistics 21(2), pp. 75–78. doi:
10.2307/1927758.

Samuelson, P. A. and W. D. Nordhaus (1995). Economics. 15th ed. McGraw-Hill: New
York etc.

Scheck, F. (2013). Theoretische Physik 2. Nichtrelativistische Quantentheorie. 3rd ed.
Springer Spektrum: Berlin Heidelberg.

Schönwiese, C.-D. (2008). Klimatologie. 3rd ed. Eugen Ulmer: Stuttgart.
Sen, A. K. and M. S. Srivastava (1990). Regression Analysis: Theory, Methods and

Applications. Springer Texts in Statistics. Springer: Berlin Heidelberg. doi: 10.1007/
978-3-662-25092-1.

Shumway, R. H. and D. S. Stoffer (2017). Time Series Analysis and Its Applications. 4th ed.
Springer: Cham. doi: 10.1007/978-3-319-52452-8.

Silver, D. et al. (2017). Mastering Chess and Shogi by Self-Play with a General Reinforce-
ment Learning Algorithm. http://arxiv.org/abs/1712.01815.

Spiess, A.-N. and N. Neumeyer (2010). “An evaluation of 𝑅2 as an inadequate measure
for nonlinear models in pharmacological and biochemical research: a Monte Carlo
approach”. In: BMC Pharmacology 10(6). issn: 1471-2210. doi: 10.1186/1471-2210-
10-6.

Subasi, A. (2020). Practical Machine Learning for Data Analysis Using Python. Academic
Press Elsevier: London. isbn: 9780128213803.

Tabachnick, B. G. and L. S. Fidell (2018). Using Multivariate Statistics. 7th ed. Pearson
Education: Harlow. isbn: 9780134790541.

Tollefson, J. (2020). “How hot will Earth get by 2100?” In: Nature 580, pp. 443–445. doi:
https://doi.org/10.1038/d41586-020-01125-x.

Unsöld, A. and B. Baschek (1999). Der neue Kosmos. Einführung in die Astronomie und
Astrophysik. 6th ed. Springer Verlag: Berlin Heidelberg New York.

VanderPlas, J. (2018). Data Science mit Python. 1st ed. mitp: Frechen.

https://doi.org/10.1007/978-3-8348-8653-8
https://doi.org/10.1007/978-3-662-56776-0
https://doi.org/10.1007/978-3-662-56776-0
https://doi.org/10.1016/j.gloenvcha.2015.01.004
https://www.pik-potsdam.de/ateam/avec/peyresq2003/internal/articles_pdf/europe_scenarios.pdf
https://www.pik-potsdam.de/ateam/avec/peyresq2003/internal/articles_pdf/europe_scenarios.pdf
https://doi.org/10.2307/1927758
https://doi.org/10.1007/978-3-662-25092-1
https://doi.org/10.1007/978-3-662-25092-1
https://doi.org/10.1007/978-3-319-52452-8
http://arxiv.org/abs/1712.01815
https://doi.org/10.1186/1471-2210-10-6
https://doi.org/10.1186/1471-2210-10-6
https://doi.org/https://doi.org/10.1038/d41586-020-01125-x

BIBLIOGRAPHY 135

Vogel, J. (2015). Prognose von Zeitreihen. Eine Einführung für Wirtschaftswissenschaftler.
Springer Gabler: Wiesbaden. doi: 10.1007/978-3-658-06837-0.

von Weizsäcker, C. F. (1985). Aufbau der Physik. Carl Hanser Verlag: München Wien.
Weigend, M. (2019). Python 3. Das umfassende Praxisbuch. 8th ed. mitp: Frechen.
Wermuth, N. and R. Streit (2007). Einführung in statistische Analysen. Fragen beantworten

mit Hilfe von Daten. Springer-Verlag: Berlin Heidelberg. doi: 10.1007/978-3-540-
33931-1.

WMO, ed. (2021). WMO Atlas of Mortality and Economic Losses from Weather, Climate
and Water Extremes (1970–2019). WMO-No. 1267. World Meteorological Organiza-
tion: Genève. isbn: 978-92-63-11267-5. url: https://library.wmo.int/doc_num.
php?explnum_id=10769.

Zeh, H. D. (2012). Physik ohne Realität: Tiefsinn oder Wahnsinn? Springer: Berlin Hei-
delberg. doi: 10.1007/978-3-642-21890-3_5.

Internet References
[MP] https://matplotlib.org/stable/tutorials/ – Matplotlib tutorial

[NumPy] https://realpython.com/numpy-tutorial/ NumPy tutorial

[Py] https://docs.python.org – Python documentation

[PyK] https://www.python-kurs.eu/ – Python tutorial (German)

[PyW] https://www.w3schools.com/python/ – Python tutorial on w3schools

[SciPy] https://scipy-lectures.org/ – SciPy lecture notes

[SKL] https://scikit-learn.org – free software machine learning library for Python

https://doi.org/10.1007/978-3-658-06837-0
https://doi.org/10.1007/978-3-540-33931-1
https://doi.org/10.1007/978-3-540-33931-1
https://library.wmo.int/doc_num.php?explnum_id=10769
https://library.wmo.int/doc_num.php?explnum_id=10769
https://doi.org/10.1007/978-3-642-21890-3_5
https://matplotlib.org/stable/tutorials/
https://realpython.com/numpy-tutorial/
https://docs.python.org
https://www.python-kurs.eu/
https://www.w3schools.com/python/
https://scipy-lectures.org/
https://scikit-learn.org

Index

*, 44
+, 44
-, 44
/, 44
MLEResults, 119
PolynomialFeautures, 61
%, 44
break, 46
coef_, 77
elif, 45
forecast, 120
intercept_, 77
predict, 86, 119
ravel, 50
score, 86

abduction, 17
ACF, 109
ADF test, 116
anonymous function, 48
argument, 47
ARIMA-process, 114
ARMA-process, 108
autocorrelation function, 109

backshift-operator, 109
Bartlett formula, 111
Bayes factor, 27
Bayesian inference, 28
Bayesian information criterion, 58
Bayesian network, 13
belief, 28
BIC, 41, 58
bigram, 9
biplot, 80
Box-Cox-Transformation, 120
break, 46

categorical scale of measure, 32
causal, 109
causal linear process, 95
cause and effect, 11
characteristic polynomial, 100
classification, 39
climate model, 23
closed theory, 20
coef_, 77
coefficient of determination, 57
conditional probability, 10
conditionally independent, 12
confidence interval, 73

confidence level, 73
Copenhagen interpretation, 19
Copernican revolution, 20
curev fitting, 68
curve_fit, 68

data point, 34
Data Science, 30
DataFrame, 50
Decomposition theorem of Wold, 95
deduction, 17
deductive model, 22
default values of functions, 47
degree of belief, 28
dependent variable, 33
deterministic model, 25
deviance, 77
diagnosis, 11
differential stationary process, 115
Differentiate a process, 114
digraph, 13
distance, 57
Durbin-Levinson recursion, 110

effect, cause and –, 11
Einstein-Podolsky-Rosen paradox, 19
elif, 45
empirical autocorrelation function, 109
endogenuous variable, 33
EPR paradox, 19
exogenuous variable, 33

f-string, 43
fill_between, 74
fit the model, 56
forecasting, 119
function, 47

Gaussian model, 59
GCM, 23
general circulation models, 23
generalized linear model, 77
GLM, 77

Holt-Winters method, 117
hypothesis, 17
hypothesis testing, 28

in-sample prediction, 119
independent, 12
independent variable, 33

136

INDEX 137

induction, 17
innovation, 95
integrated process, 115
integration of a process, 114
intercept_, 77
interval scale, 32
invertible MA(q) process, 106
IPCC, 23

joint probability, 9
Jupyter Notebook, 42

Kepler, Johannes (1571–1630), 70
KPSS-Test, 116

lambda expression, 48
least square method, 57
library (Python), 48
likelihood, 12, 34
likelihood ratio, 28
linear process, 94
link function, 77
list comprehension, 46
loading (principal component), 80
locality, 19
log-log-scale, 72

MA(q) process, 105
machine learning, 39
marginal probability, 9
market efficiency, 96
mathematical model, 22
matrix, 50
measurement, 11, 19
metric scale of measure, 32
MLEResults, 119
model, 14, 19, 21, 22, 33, 35, 38, 39, 93

statistical –, 33
model selection, 22
module (Python), 48
mpl_toolkits.mplot3d, 63
multidimensional regression, 61
multivariate time series, 91

noise, 91
nominal scale, 32
nonlinear regression, 64
null hypothesis, 28, 116

observation, 11, 34
Occam’s razor, 25, 40
out-of-sample forecasting, 119
overfitting, 39, 67

p-value, 28
PACF, 110
package (Python), 48
Pandas Series, 118
parameter, 47
parameter-linear regression model, 58, 65
partial autocorrelation function, 110

PCA, 79
Peirce, Charles Sanders (1839–1914), 17
penalty function, 77
pipeline, 86
polynomial regression, 67
posterior probability, 10
predict, 86, 119
predictive model, 86
predictor, 33
principal component analysis, 79
prior probability, 10
probability, 8
probability ratio, 27
process

causal linear –, 95
linear –, 94
stationary –, 93

quantile, 73, 74
quantum theory, 18

R2, 57
randint, 124
random function, 124
random variable, 7, 93

conditionally independent –, 12
random walk, 94, 103, 115
random walk hypothesis, 95
ratio scale, 33
ravel, 50
reality, 18, 19
regression, 39
regression model, 56
regression, nonlinear –, 64
RegSSR, 58
regularization function, 77
reinforcement learning, 31
residual, 57
residue, 34
response variable, 33
revolution, 20
RPC, 23
RSS, 57

sampling rate, 91
SARIMAX, 117
scalar time series, 91
scale ofmeasure, 32
scatterplot matrix, 85
scenario, 23
scipy.optimize, 61, 68
score, 86
score (PCA), 80
score vector, 80
scree plot, 81
Series, 50
shock, 95
splat operator *, 48
SSR, 68
starred expression *, 48

138 Andreas de Vries: Machine Learning

stationary-process, 93
statistical hypothesis testing, 28
statistical model, 25, 33, 35, 38
stochastic process, 93
structure-testing vs. structure-detecting methods, 38
supervised learning, 31
SVR, 67

target, 33
technical analysis, 96
tensor, 50
TSS, 57
types of learning, 31

underfitting, 39
unit deviance, 77
unit root tests, 116
univariate time series, 91
unpacking parameter list, 48
unsupervised learning, 31

white noise, 94
Wold decomposition, 95
Wold expansion, 94

	I Foundations
	Probability theory
	Random variables and probabilities
	Bayes' Theorem
	* Conditional independence
	Problems

	Models and theories
	Methods of logical inference
	Theories
	What exactly is a model?
	Occam's razor and model selection
	Problems

	Theoretical foundations of machine learning
	What is machine learning?
	Statistical variables
	Statistical models
	Methods of machine learning
	Challenges of machine learning

	Introduction to Python
	Basic language elements
	Control structures
	Libraries and modules
	Problems

	II Data analysis
	Regression
	Residuals and scoring of fitted regression models
	Linear regression in one dimension
	Multiple linear regression
	Nonlinear regression
	Problems

	Data analysis with Python
	Parametric statistical models in Python
	Principal component analysis
	The pipeline: automating data analysis

	III Time series
	Time series analysis
	introduction
	Stochastic processes as the basis of time series
	Causal linear processes
	The random walk hypothesis in economics
	Problems

	Autoregressive models
	Stochastic processes in economics
	Definition and properties of autoregressive processes
	Causality of autoregressive processes
	Problems

	Autoregressive models with moving average
	MA models
	ARMA
	Estimation of the order of ARMA models

	Trends and periods: SARIMA models
	Time series with trends: Integrated processes
	Approach to trends
	SARIMA
	SARIMA models in statsmodels
	Parameters to generate a SARIMAX model
	Fitting a SARIMAX model
	Predictions of a SARIMAX model
	Choosing a SARIMA model
	Problems

	Appendix
	Solutions to selected problems
	Heuser about the Samuelson multiplyer

	Bibliography
	Internet References

