

Managing Small Software Projects -

An Integrated Guide Based on PMBOK, RUP, and CMMI

César Cid Contreras M.Sc.
Prof. Dr. Henrik Janzen

Published at the South Westphalia University of Applied Sciences, Campus Soest, in August 2006.

© by the authors. Changes of this file and commercial use only with permission by the authors. Use

of parts of this study in any non-commercial form is allowed only with correct citation.

ISBN-10: 3-939410-01-2

ISBN-13: 978-3-939410-01-0

Abstract

Software projects are generally complex and the environment in which they are developed is dynamic.
The dynamics of this environment are based i.e. on the business conditions and the technological changes
that appear during the project. These conditions lead to the result, that the software industry has continu-
ously cost overruns, late deliveries, poor reliability, and user dissatisfaction. One cause of these deviations
lays on the poor or improper project management ascription that allows a project to be out of control
quickly. This work develops a guide, which is based on the body of knowledge of project management,
the Rational Unified Process and the capability of assessment standard CMMI-SW (Staged) Level 2, to
exercise executive, administrative, and supervisory direction of small software development projects. The
guide provides orientation to project managers of small projects for the application of PMBOK in the de-
velopment of software within the framework of the standard CMMI level 2 and the Rational Unified Proc-
ess. It is concluded that the guide provides a path and foundation to new managers, new project leaders,
and experienced ones as well to manage small software development projects effective. The result of us-
ing the guide should be improvements in cost, productivity, defects, schedule, and business value.

Keywords

Project Management, PMBOK, Rational Unified Process, RUP, Capability Maturity Model Integration,
CMMI, software development.

1. Background

Many of the software development ef-
forts are considered as projects. Software pro-
jects are generally complex and the environment
in which they are developed is dynamic. The
dynamics of this environment are based on the
business conditions and the technological
changes that appear during the project. Users are
not sure of their needs and change their require-
ments several times during the project. These
conditions lead as a result, that the software in-
dustry has continuously cost overruns, late de-
liveries, poor reliability, and user dissatisfaction
[1].

The managing of projects is difficult and soft-
ware development projects are not so far from
this. Some difficulties have their origin in the
own characteristics of the product, others have a
relationship with management [1]. Although
every software project has to overcome technical
difficulties, these are not the main reason of the
failure of projects [2].

The real important project shortfall lays on the
poor or improper project management ascription
that allows a project to be out of control quickly.
If the project-related goals are not fulfilled, the
project will fail and the frustrated members of
the project will be addressed to another task [2].

Project managers play a crucial role in software
projects and can be a major source of errors that
lead to failure [3]. The project manager is re-
sponsible for project planning and estimation,
control, organization, contract management,
quality management, risk management, commu-
nications, and human resource management. Bad
decisions by project managers are probably the
single greatest cause of software failures today
[3].

Because of the fact that software development
can be considered as a project, essential defini-
tions of project, management, and project man-
agement are required. For this aim, Project Man-
agement Institute (PMI) Project Management
Body of Knowledge (PMBOK® 2004) is selected.
The PMBOK® Guide is a standard that describes
best practices for what should be done to manage
a project. It covers nine areas that contain rele-

vant knowledge. The practices and knowledge
described on it are applicable to most projects
most of the time, and that there is also a wide-
spread consensus about their value and useful-
ness.

Careless software development practices are rich
a source of failure too, and they can cause errors
at any stage of a software project [4]. To help
organizations assess their software-development
practices, the U.S. Software Engineering Insti-
tute (SEI) created the Capability Maturity Model
(CMM). It rates a company’s practices against
five levels of increasing maturity. The SEI’s
CMM has gained popularity in recent years for
assessing and improving software processes.
CMM may be defined as a degree to which an
organization is in fact using an orderly software
development process. CMM-Integration
(CMMI) supersedes is superseding CMM and
aims for a broader assessment of an organiza-
tion’s ability to create software-intensive sys-
tems. Adoption of CMMI allows expanding the
scope of and visibility into the software life cy-
cle and activities to ensure that the software
product meets customer expectations [4].

We take the Rational Unified Process as our
product life cycle- software development life
cycle actually-. The RUP is considered as a
software development approach, well-defined
and well-structured software engineering proc-
ess, and a process product. As a software devel-
opment approach, RUP is an iterative software
life cycle, architecture-centric, and use-case-
driven [5]. We are interested in these features
because it promotes delivering of executable
software at early stages of the software life cy-
cle. Production of executable software is a good
parameter to keep a real tracking of the status of
the project [5]. The phases of the RUP are Incep-
tion Phase, Elaboration Phase, Construction
Phase, and Transition Phase.

2. Guide for managing small soft-
ware projects

The guide is integrated by the use of the better
practices provided by the PMBOK® Guide and
the key processes established by the CMMI-SW
(Staged) Level 2, to exercise executive, adminis-
trative, and supervisory direction of small soft-
ware development projects. The integration will
be done within the Rational Unified Process
(RUP) phases. The RUP is a software develop-
ment approach that helps us to define our prod-
uct life cycle in which the guide is addressed
(Figure 2.1).

Figure 2.1 Implementation of the PMBOK and the CMMI-
SW (Staged) Level 2 within the phases of the software
development lifecycle proposed by the RUP.

2.1 Inception Phase

Inception is the first of the four phases of the
RUP. It is about understanding the project scope
and objectives and getting enough information to
confirm that the project can be addressed or not.
The objectives of the Inception phase [5] are
taken to develop our first steps to achieve the
first phase of the RUP. The objectives of the
Inception phase are required to be done as paral-
lel activities.

2.1.1 Objectives of the Inception Phase

Understand what to build.

• Identify key stakeholders. Identification
of individuals and organizations that are
actively involved in the project, or who
interest may be affected as a result of

project execution or project completion
[6]. The contact information of the
stakeholders is as important as the iden-
tification of them. Their contact infor-
mation should be obtained to keep al-
ways channels of communication with
them.

• Organize teams. Organize the project

around cross-functional teams contain-
ing analysts, developers, testers, [5] and,
if possible, users. If the project is bigger,
we organize the projects around the ar-
chitecture. The architecture team decides
on the subsystems and the interfaces be-
tween them. Teams communicate with
other teams primarily through the archi-
tecture and the architecture team [5] (see
Figure 2.2).

Figure 2.2 Teams organized around architecture. Is the
project is too big to have everyone on one team? We may
organize teams around architecture in “team of teams”. An
architecture team owns the subsystems and their interfaces,
and a cross-functional team is responsible for each of the
subsystems [5].

• Write a vision document. The Vision
document creates the foundation for
common understanding of the motiva-
tion for building the system, as well as a
high-level definition of the system to be
built [5]. The vision should be public
shared, and constantly reviewed with the
stakeholders. Points described below
will be also part of the Business Case
document. The Business Case describes
the economic value of the product, ex-
pressing it in quantitative terms such as,
for example return on investment (ROI).
Points to be considered in the vision
document are the following [5]:

 Introduction.
 Business objective.
 Current situation and prob-

lem/opportunity statement.
 Critical assumptions and constraints,

e.g. nonfunctional requirements.
 Preliminary project requirements

(use case model).
 Glossary.

Identify key system functionality.

• Identify critical use cases. Some criteria
for the key-use cases are [5]:
 The use case is the core of the appli-

cation.
 The use case exercises key interfaces

of the system.
 The use case captures the essence of

the system, and delivering the appli-
cation without it would be fruitless.

 The use case covers an area of the
architecture that is not covered by
any other critical use case.

Determine at least one possible solution.

• Some points to consider for determining
a potential architecture are [5]:
 Desired functionality (first version,

as well as future versions of the ap-
plication).

 Compatibility with other applica-
tions.

 Requirements on operations.
 Maintenance.

• Look for options. Some considerations

should be taken into account to facilitate
our decision making [5]:
 Are there other similar systems that

were built within our organization or
outside?

o What technology and archi-
tecture were used on them?

o What was the cost?
 Is the current technology still ade-

quate?
 What technologies would be used

within the new system?
 Is it necessary to acquire new tech-

nologies?
o What are their risks and

costs?

 What are the components needed for
the system?

o Can these components be
purchase?

o Can they be reused from an-
other in-house project?

o What are their risks and
costs?

• Write the second part of the business

case. On this second part of the Business
Case, we can describe briefly the options
for addressing the challenge and what
from our point of view is the best option
[5].

• Implement some key elements of the ar-

chitecture (if applicable). The implemen-
tation in software of key elements will
help us to identify risks and options for
the architecture that should be developed
[5].

Understand the costs, schedule, and risks as-
sociated with the project.

• Write the third part of the business case.
Points to be considered in the vision
document are the following [5]:
 Budget estimate and financial analy-

sis.
 Schedule estimate.
 Potential risks.
 Exhibits.

• Check with stakeholders. The docu-

ments that should be checked together
with the stakeholders and signed by
them also are [5]:
 Business Case.
 Vision.
 Project Charter.
 Software Development Plan.

Decide what process to follow and what tools
to use.

• Process. We decide how we are going to
develop software, i.e. the process to fol-
low. This process should be shared
among all the team members [5].

• Tools. Once we have decided on a proc-

ess, we can choose what tools to use. In

some cases, the tool environment may
already be decided. If not, then we need
to choose which Integrated Development
Environment (IDE), requirements man-
agement tool, visual modeling tool, con-
figuration and change management tool ,
and so on to use [5].

• Artifacts to produce. Artifacts are the

tangible project elements (things the pro-
ject produces or uses while working to-
ward the final product) [5].

• Templates. The project manager and the

architect should settle what templates to
use, and how to document the informa-
tion [5].

2.1.2 Suggested iterations and outputs

Iterations.
We suggest two iterations for this phase of the
project. In the first iteration, analysts and stake-
holders should write a draft of the Vision docu-
ment, use cases model, and a glossary of terms
used in the project. It should be also considered
the development of a conceptual prototype to
help clarifying and agreeing in use cases with
stakeholders. The project manager and the archi-
tect should think about the adequate process and
tools which are the most suitable for the project.

During the second iteration, the team refines the
Vision document with the feedback given by the
stakeholders, the most critical use cases are de-
scribed in detail and updates to the use case
model are done. Based on the detailed descrip-
tion of the critical use cases, the implementation
of a functional prototype should be achieved,
thus it will help to determine what technology
and tools to use within the project.

Outputs.
The outputs of this phase are as follows:

• Contact information of the key stake-
holders.

• Vision document.
• Business Case.
• Project Charter.
• Software Development Plan.

Regarding the Project Charter, this document
should be preferably one or two pages long, and
it may refer to other documents, such as business
case, as needed. The signatures of key stake-
holders and their individual comments are the
most important parts [6].

Points the Project Charter may contain are the
following [6]:

• Project Title.
• Project start date.
• Projected finish date.
• Budget information.
• Project manager name.
• Project objectives
• Approach to fulfill the requirements.
• Roles and responsibilities of key stake-

holders.
• Comments of the stakeholders.

2.1.3 Planning for the Inception Phase

Two kinds of plans are developed [5]:

• Project Plan. This is a coarse-grained
plan, which focuses on phases and itera-
tions, their objectives, and the overall
staffing level.

• Iteration Plans. These are a series of
fine-grained plans, one per iteration,
which bring activities and individual re-
sources into perspective.

2.1.3.1 Project plan.
The project manager may collaborate closely
with the development team or the architect to
determine an initial estimate of the overall size
of the project. Consideration of historical data is
also helpful when the current project is com-
pared with previous similar projects.

Determine dates of major milestones.
Milestones considered for every phase in the
RUP are the following [5]:

• Life Cycle Objective (LCO) Milestone.
End of Inception, project well scoped
and funded.

• Life Cycle Architecture (LCA) Mile-
stone. End of Elaboration, architecture
complete, requirements baseline set.

• Initial Operational Capability (IOC)
Milestone. End of Construction, first
beta release.

• Product Release (PR) Milestone. End of
Transition and of the development cycle.

Determine staffing profile.
Staffing is the allocation of the right level of
resources to the project alongside the lifecycle.
Figure 2.3 shows a typical staffing profile.

Figure 2.3 Typical Resource Profile for a Development
Cycle. The resources used within each phase vary greatly
from project to project. This graph provides us with a start-
ing point for a discussion around resource needs [5].

Determine iterations.
Related to the number of iterations is the issue of
the length of an iteration (see Table 2.1). As first
approximation, obtain the iteration length by
dividing the length of the phase by the number
of iterations. If the duration obtained is not quite
right, revisit the process [5].

Number of Iterations Per Phase Project
Size

(People)

Project
Length

(Months)

Iteration
Length
(Weeks) Inception Elaboration Construction Transition

3 4 2-3 1 1 3 1
10 8 4 1 2 3 2

Table 2.1 Degrees of iteration in different projects. This
table can be used as a starting point when deciding how
many iterations to have (took it partially from [5] for small
projects).
2.1.3.2 Iteration plan.
As the iteration plan focuses on one only itera-
tion, it has a time span small enough that it pro-
vides team members with a plan that includes the
right level of granularity on tasks and successful
allocation to various team members [5]. A pro-
ject usually has two iterations plans “active” at
any time [5]:

• Current Iteration Plan: it is for the cur-
rent iteration, which is used to track pro-
gress.

• Next Iteration Plan: it is for the upcom-
ing iteration, which is built toward the
second half of the current iteration and is
ready at the end of the current iteration.

We can read on Schwalbe [6] the application of
the PMBOK Guide to a software development
project. In this study, we apply the PMBOK
Guide to every iteration plan within every phase
of the RUP software life cycle. We follow the
basic structure provided by Schawalbe [6] but
taking into account the objectives and outputs
required by the RUP software life cycle and the
CMMI (staged) Level 2.

First iteration plan.
For the first phase of the development cycle, we
suggest two iterations; the plan for the first itera-
tion is described as follows:
1. Current Iteration Plan

1.0 Initiating.
1.1 Identify key stakeholders.
1.2 Prepare Vision document.

2.0 Planning.
2.1 Hold project kick-off meeting.
2.2 Prepare WBS.
2.3 Identify, discuss, and prioritize risks.
2.4 Prepare schedule and cost baseline for.

• Determine task resources.
• Determine task durations.
• Determine task dependencies.
• Create draft Gantt chart.
• Review Gantt with stakeholders, obtain

commitment, and finalize Gantt chart.

3.0 Executing.
3.1 Create draft Use Case Model.
3.2 Create Glossary.
3.3 Develop Conceptual Prototype (if applica-
ble).
3.4 Establish Configuration and Control Man-
agement.

4.0 Controlling.
4.1 Status reports.
4.2 Review of conceptual prototype (if applica-
ble).

5.0 Closing
5.1 First draft Vision
5.2 First draft Use Case Model.
5.3 First draft Glossary Model.
5.4 Conceptual prototype (if applicable).
5.5 Possible options of process and tools for
fulfill the project.
5.6 Configuration and Control Management.
5.7 Lessons learned document.

Second iteration plan.
The plan for the second iteration is described as
follows:

2. Next Iteration Plan

1.0 Initiating.
1.1 Refine Vision document.

2.0 Planning.
2.1 Prepare WBS.
2.2 Identify, discuss, and prioritize risks.
2.3 Prepare schedule and cost baseline for.

• Determine task resources.
• Determine task durations.
• Determine task dependencies.
• Create draft Gantt chart.
• Review Gantt with stakeholders, obtain

commitment, and finalize Gantt chart.

3.0 Executing.
3.1 Identify Key System Functionality.
3.2 Detail Critical Use Cases.
3.3 Determine one possible solution (write 2nd
part of the business case).
3.4 Develop functional prototype (if applica-
ble).
3.5 Determine costs, schedule, and risks for the
next phases of the development process (write
3rd part of the business case).
3.6.Check with stakeholders:

• Business case
• Vision
• Project Plan
• Project Charter

3.7 Determine process to follow and tools to
use.

4.0 Controlling.

2.2 Elaboration Phase

Elaboration is the second phase of the RUP. It
addresses major risks, builds an early skeleton
architecture of the system, and refines and
evolves the project plans that were produced in
Inception. Risks associated with requirements,
the architecture, costs ad schedule, process and
tool environment are addressed in this phase [5].

2.2.1 Objectives of the Elaboration Phase

Get more detailed understanding of the re-
quirements.
By the end of the Inception phase, we should
have detailed the critical use cases in our use
case model. These architecture significant use
cases should be the 20% of the total use cases.
By the end of the Elaboration phase, we should
have a complete description of the majority of
the use cases. It is important to have the descrip-
tion of the use cases but also a prototype. The
user will interact with the prototype as we test
each use case with him/her. The interaction will
clarify the user what information is displayed
and entered. Feedback from the user is valuable
through the entire project but more important in
this phase [5].

Design, implement, validate, and baseline the
architecture.

• Architecture: defining subsystems, key
components, and their interfaces. Rather
than inventing a new architecture, we
should first envisage whether there is an
architectural framework available,
commercial architecture or a similar ar-

chitecture that we developed before from
a previous work. If there is not such ar-
chitecture, then we have to identify the
major building blocks, that is, the sub-
systems and major components. For
each identified subsystem or component,
we should describe the key capabilities
they need to offer, namely, their inter-
faces toward the rest of the system. In
parallel with identifying key components
and subsystems, we need to survey
available assets inside and outside the
company [5].

• Use architecturally significant use cases

to drive the architecture. The critical use
cases identified in the Inception phase
are likely to be significant in driving the
architecture. Other aspect to take into
account in driving the architecture is the
nonfunctional requirements. The non-
functional requirements are technical
challenges to the infrastructure part of
the architecture, for example response
time, load, and error recovery [5]. Fi-
nally, we should identify some use cases
that, although not critical nor technically
challenging, address some parts of the
system not yet covered, so we can have a
complete control of the entire architec-
ture an the end of Elaboration. We must
ensure that the architecture will us to de-
liver all the architecturally significant
use cases by designing, implementing,
and testing as many of these use cases as
necessary to mitigate the risks associated
with them [5].

• Design the database. If our solution in-

cludes a database where data is retrieved
and stored, we should start the design of
it [5].

• Outline concurrency, processes, threads,

and physical distribution. The main goal
of this objective is to describe the run-
time architecture in terms of concur-
rency, processes, threads, interprocess
communication, and so on [5].

• Identify architectural mechanisms. Ar-

chitectural mechanisms represent com-

mon concrete solutions to frequently en-
countered problems [5]. The most com-
mon and difficult problems can be solve
once by designing, implementing, test-
ing, and documenting architectural
mechanisms. Then, all team members
can take advantages of these ready-made
solutions whenever they need them.

• Implement critical scenarios. We can de-

sign a little, implement what we design,
detect deficiencies, and then improve the
design. We should also develop test
documentation to make sure our imple-
mentations perform according to specifi-
cations [5].

• Integrate components. Integration and

testing are common tasks when doing it-
erative development. As we do analysis
and design, we should determine the or-
der and the components we want to inte-
grate, so we can verify our design and
implement the functionality necessary to
integrate and compile the evolving sys-
tem for testing [5].

• Test critical scenarios. By testing we

want to verify that [5]:

 Critical scenarios have been
properly implemented and offer
the expected functionality.

 The architecture provides suffi-
cient performance.

 The architecture can support
necessary load.

 Interfaces with external systems
work as expected.

 Any other requirements in the
supplementary specification
(non functional requirements)
that are not captured above are
tested.

Mitigate essential risks, and produce accurate
schedule and costs estimates.
Toward the end of Elaboration, we have the fol-
lowing information [5]:

• Detailed requirements.
• Implementation of a skeleton structure

(executable architecture).

• Mitigation of the vast majority of risks.
• Understanding of how effectively we are

working with the people, the tools, and
the technology.

This information will provide us more accurate
information allowing us to update the Vision
document, the project plan and cost estimate.

Refine process and tools, and put the devel-
opment environment in place.
During Inception, we have defined what process
to follow and tools to use and did necessary cus-
tomization. In Elaboration, we update the proc-
ess and fine-tune our tool implementation ac-
cording to the experience that we have gained
during these two phases. We also should outline
what artifacts should be produced, what tem-
plates to use, and how to document information
[5].

2.2.2 Suggested iterations and outputs

Iterations.
It is suggested two iterations for this phase of the
project. In the first iteration, the following activi-
ties are considered [5]:

• Design, implement, and test a small
number of critical scenarios.

• Identify, implement, and test a small set
of architectural mechanisms.

• Do a preliminary logical database de-
sign.

• Detail flow of events of half of the use
cases intended to detail in Elaboration.

• Test enough to validate that your archi-
tectural risks are mitigated.

In the second iteration the following activities
are considered [5]:

• Fix whatever was not right in the first it-
eration.

• Design, implement, and test the remain-
ing architecturally significant scenarios.

• Outline and implement concurrency,
processes, threads, and physical distribu-
tion.

• Identify, implement, and test remaining
architectural mechanisms.

• Design and implement a preliminary
version of the database.

• Detail the second half of the use cases
intended to detail in Elaboration.

• Test, validate, and refine the architecture
to the point where it can be a baseline.

Outputs.
 The outputs of this phase are as follows:

• Use case model update
 Critical use cases detailed.
 Complete description of use cases

(about 80%).
 Description of subsystems and inter-

faces.
• Database design.
• Architectural mechanisms document.
• Design of use cases document.
• Test plan.
• Development environment.
• Functional architecture.
• Project plan update.
• Vision update.

2.2.3 Planning for the Elaboration Phase

One of the priorities of the Elaboration phase is
the mitigation of risks. Risks will determine
which use cases and scenarios will be developed
in each iteration [7]. For this Elaboration phase,
we suggest 2 iterations. The first iteration will
deliver a functional prototype of the architecture;
during the second iteration, a baseline architec-
ture should be completed.

2.2.3.1 Project plan
The project manager with the architect can up-
date the estimates on the project plan based on
the use case model and vision provided by the
Inception phase. Consideration of historical data
is also helpful when the current project is com-
pared with previous similar projects.

Update dates of major milestones.

• Life Cycle Architecture (LCA) Mile-
stone. Update end of Elaboration date.

• Initial Operational Capability (IOC)
Milestone. Update end of Construction
date.

• Product Release (PR) Milestone. Update
end of Transition date.

Update staffing profile.
Update estimations about staffing for Elabora-
tion phase and the following phases.

Update iterations.
Make adjustments either to the length of the
phase or to the number of iterations.

2.2.3.2 Iteration plan.
We may have at least two iterations. The plan of
both iterations is described below.

First iteration plan.
For the Elaboration phase, the plan for the first
iteration is described as follows:

1. Current Iteration Plan

1.0 Initiating.
1.1 Refine Vision document.
1.2 Review use case model.

2.0 Planning.
2.1 Prepare WBS.
2.2 Identify, discuss, and prioritize risks.
2.3 Prepare schedule and cost baseline for.

• Determine task resources.
• Determine task durations.
• Determine task dependencies.
• Create draft Gantt chart.
• Review Gantt with stakeholders, obtain

commitment, and finalize Gantt chart.

3.0 Executing.
3.1 Define subsystems, key components, and
their interfaces.
3.2 Document subsystems, key components,
and their interfaces (update use case model).

If a commercial framework is selected for the
architecture, we should determine the acquisi-
tion type, select suppliers and establish supplier
agreements.

3.3 Establish a deployment site and a deploy-
ment plan.
3.4 Select a small number of critical scenarios.
3.5 Design the small number of critical scenar-
ios.
3.6 Design database.
3.7 Design a test plan for the small number of
critical scenarios. Consider:

• Measures.
• Analysis of measures.
• Way of collecting measures.

• Report of measures.
3.8 Implement the small number of critical sce-
narios.
3.9 Test the small number of technical scenar-
ios.
3.10 Create a 1st build.
3.11 Review 1st build with stakeholders.

• Compare 1st build with use case model.
• Create a verification report.

3.12 Fix what was wrong on the 1st build.
3.13 Identify, implement, and test architectural
mechanisms.
3.14 Document architecture.
3.15 Document architectural mechanisms.
3.16 Update use case model.

Repeat from step 3.4 to 3.16 the times of builds
we want to create.
(At least two builds are suggested per week).

3.16 Detail the events flow of the first half of
the use cases intended to detail in Elaboration in
order of decreasing risk.
3.17 Set development environment.

4.0 Controlling.
4.1 Status reports (weekly).
4.2 Review of the last build (functional archi-
tecture).

5.0 Closing
5.1 Use case model updated (half of the use
cases intended to detail in Elaboration).
5.2 First designs of critical scenarios of archi-
tecturally use cases.
5.3 Architectural mechanisms document.
5.4 Architecture document.
5.5 Setting of development environment.
5.6 Process and tools refined.
5.7 Lessons learned document.

Second iteration plan.
The plan for the second iteration is described as
follows:

2. Next Iteration Plan

1.0 Initiating.
1.1 Review of use case model.

2.0 Planning.
2.1 Prepare WBS.
2.2 Identify, discuss, and prioritize risk
2.3 Prepare schedule and cost baseline for.

• Determine task resources.
• Determine task durations.
• Determine task dependencies.
• Create draft Gantt chart.
• Review Gantt with stakeholders, obtain

commitment, and finalize Gantt chart.

3.0 Executing.
3.1 Select the remaining critical scenarios.
3.2 Design the remaining critical scenarios.
3.3 Design database.
3.4 Implement database.
3.5 Design a test plan for the remaining critical
scenarios.
3.6 Implement the remaining critical scenarios.
3.7 Test the remaining critical scenarios.
3.8 Create a 1st build.
3.9 Review 1st build with stakeholders.

• Compare 1st build with use case model.
• Create a verification report.

3.10 Fix what was wrong on the 1st build.
3.11 Identify, implement, and test architectural
mechanisms.
3.12 Document architecture.
3.13 Document architectural mechanisms.
3.14 Update use case model.

Repeat from step 3.1 to 3.14 the times of builds
we want to create.
(At least two builds are suggested per week).

3.15 Detail the events flow of the second half of
the use cases intended to detail in Elaboration in
order of decreasing risk.

4.0 Controlling.
4.1 Status reports (weekly).
4.2 Review of the last build (functional baseline
architecture).

5.0 Closing
5.1 Use case model updated (complete descrip-
tion of the use cases, about 80% of the total use
cases).
5.2 Documented designs of the critical scenar-
ios.
5.3 Update of architectural mechanisms docu-
ment.

5.4 Document of baseline architecture.
5.5 Process and tools baseline.
5.7 Lessons learned document.

2.3 Construction Phase

Construction focuses on detailed design, imple-
mentation, and testing to flesh out a complete
system. During this phase, we focus on develop-
ing high-quality code cost-effectively. Keys of
success in this phase are architectural integrity,
parallel development, configuration and change
management, and automated testing [5].

2.3.1 Objectives of the Construction Phase

Minimize development costs and achieve
some degree of parallelism.

• Organize around architecture. A robust
architecture divides the system responsi-
bilities into well-defined subsystems. An
architect or an architecture team worries
about the architecture and how it all ties
together, and individuals can focus on
their assigned subsystem(s) [5].

• Configuration management. A configu-

ration management system is used to
track all versions of the many files being
created and changed in the iterative de-
velopment. With the help of a configura-
tion management system we can to de-
termine which version of these new or
changed files goes into each build [5].

• Integration planning. Each iteration

needs and integration build plan specify-
ing which capabilities should be testable
in each build and which components
need to be integrated to produce required
capabilities, such as use cases, part of
use cases, or other testable functionality.
The tests may include functional, load,
stress, or other types of tests [5].

• Enforce the architecture. Developers

should be trained on the architecture and
architectural mechanisms available to
prevent each developer from arbitrarily
reinventing solutions for problems such

as dealing with persistency or interproc-
ess communication. This training proc-
ess includes design reviews with archi-
tects and developers [5].

• Ensure continual progress. Some guide-

lines to consider for a continual progress
are the following [5]:
 Create one team with one mission.

We should have cross functional
teams, were each team member feels
responsible for the application and
for the team making progress.

 Set clear, achievable goals for de-
velopers. Each developer should
have a very clear picture of what to
accomplish in a given iteration, if
not within a portion of the iteration.
The developers should agree that the
expected deliverables are achievable.

 Continually demonstrate and test
code. Continual demonstration and
testing of executable code is the only
way to ensure progress.

 Force continuous integration. Per-
forming frequent builds ensures fre-
quent integration testing, which pro-
vides feedback on the recent code
that has been written since the last
build.

Iteratively develop a complete product that is
ready to transition to its use community.

• Describe the remaining use cases and
other requirements. Nonessential use
cases and those with no major architec-
tural impact are generally skipped in
Elaboration. Also, in some systems there
are similar use cases, having the same
general sort of functionality, but for dif-
ferent entities, or different actors, with
different user interfaces. These types of
use cases should be detailed in Construc-
tion, along with partially detailed use
cases. Performance requirements or re-
quirements related to application stabil-
ity should be documented as well [5].

• Fill in the design. In earlier Construction

iterations, we should design, implement
and test only the most essential scenarios
for the selected use cases. In later Con-

struction iterations, we should focus on
completeness until we eventually design,
implement, and test all scenarios of the
selected use cases [5].

• Design the database. In the Construction

phase, additional columns may be added
to tables, views may be created to opti-
mize performance, but major restructur-
ing of tables should not occur [5].

• Implement and unit-test code. Develop-

ers need to test their implementations
continuously to verify that they behave
as expected. Test drivers and test stubs
may be designed and implemented to
test component(s). Test drivers and test
stubs emulate other components that will
interact with the component(s); they also
allow us to run a number of test scenar-
ios [5].

• Do integration and system testing. When

producing a build, components are inte-
grated in the order specified in the inte-
gration build plan. To increase quality,
continuously integrate and test our sys-
tem [5].

• Early deployments and feedback loops.

Performing frequent builds drives to
continuous integration and verification
that the code works. Integration and sys-
tem testing also reveals many quality is-
sues. It is crucial to get early feedback
on whether the application is useful and
provides desired behavior, by exposing
it to actual users [5]. Some approaches
for having feedback include [5]:
 Bringing a few users to the devel-

opment environment and demon-
strating key capabilities.

 Bringing a few users to the devel-
opment environment and having
them use the product for some time.

 Installing the software at a test site
and sitting with the users as they are
using the software.

 For hosted applications, providing
some users with early access.

• Prepare for Beta deployment. A beta de-
ployment is “prerelease” testing in
which a sampling of the intended audi-
ence tries out the product. Beta deploy-
ment is done at the end of the Construc-
tion phase and is the primary focus of
the Transition phase [5]. Beta testing has
two purposes: First, it tests the applica-
tion through a controlled actual imple-
mentation, and second, it provides a pre-
view of the upcoming release. It is im-
portant that the product is complete,
based on the scope management that has
occur during iterations. The beta de-
ployment should include installation in-
structions, user manuals, tutorials, and
training material, so the testers can give
also feedback on them [5].

• Prepare for final deployment. The final

deployment should be done in Construc-
tion and sometimes earlier in Elabora-
tion. Some activities regarding final de-
ployment include [5]
 Producing material for training users

and maintainers to achieve user self-
reliability later.

 Preparing deployment site and con-
verting operational databases.

• Preparing for launch: packaging and
production; preparing for rollout to
marketing, distribution, and sales
forces: preparing for field personnel
training. These activities should take
into account specially when develop-
ing a commercial product.

2.3.2 Suggested iterations and outputs

Iterations.
It is suggested three iterations for this phase of
the project. In the first iteration, the following
activities are considered [5]:

• Identify use cases that are
 Most essential to customers.
 Most technical risky.

• Classify use cases in order of decreasing
risk.

• Identify components that need to col-
laborate together to achieve use case
functionality.

• Implement only some scenarios within
the most risky use cases.

• Update case model and architectural
mechanisms.

In the second iteration the following activities
are considered [5]:

• Keep implementing scenarios within the
most risky use cases.

• Update use case model/architectural
mechanisms.

• Start implementing al the scenarios of
the use cases.

The third iteration includes the following activi-
ties [5]:

• Implement all the remaining scenarios of
the use cases.

• Update use case model/architectural
mechanisms.

• Write supporting documentation.

Outputs.
The outputs of this phase are as follows:

• Use case model update
 All use cases detailed (100%).
 Description of all subsystems and in-

terfaces.
 Description of subsystems and inter-

faces.
• Database design updated and completed.
• Architectural mechanisms document.
• Design of use cases document updated

and completed.
• Test plan updated.
• Project plan update.
• Draft version of the supporting docu-

mentation.
• Beta release (functional system).

2.3.3 Planning for the Construction Phase

The activities of the Construction phase are de-
tailed designing, implementation, and testing to
develop a complete system [5]. For Construc-
tion, we suggest 3 iterations. In the first one, use
cases that are most essential to customers will be
implemented, as well those associated with most
technical risk. This activity could be also ex-
tended to a part of the second iteration. We are

going to implement all the use cases in the fol-
lowing iterations, having in mind a risk decreas-
ing order.

2.3.3.1 Project plan
We have more information about the project
from the previous phases and we have mitigated
the main risks in previous phases, so we can
have a better approximation of our estimates for
the project plan and its iterations. The Construc-
tion phase is the phase of the lifecycle project
that requires more staffing.

Update dates of major milestones.

• Initial Operational Capability (IOC)
Milestone. Update end of Construction
date.

• Product Release (PR) Milestone. Update
end of Transition date.

Update staffing profile.
Update estimations about staffing for Construc-
tion phase and the following phases. A major
participation of developers is expected in this
phase.

Update iterations.
Make adjustments either to the length of the
phase or to the number of iterations.

2.3.3.2 Iteration plan.
We may have at least three iterations.

First iteration plan.
For the Construction phase, the plan for the first
iteration is described as follows:

1. Current Iteration Plan

1.0 Initiating.
1.1 Review Vision document.
1.2 Review use case model.

2.0 Planning.
2.1 Prepare WBS.
2.2 Identify, discuss, and prioritize risks.
2.3 Prepare schedule and cost baseline for.

• Determine task resources.
• Determine task durations.
• Determine task dependencies.

• Create draft Gantt chart.
• Review Gantt with stakeholders, obtain

commitment, and finalize Gantt chart.

3.0 Executing.
3.1 Identify most essential to customer and/or
most essential risky use cases.
3.2 Identify components that need to collaborate
together to provide use case functionality.
3.3 Implement a couple of scenarios within the
most essential to customer and/or most essential
risky use cases.

• Design components.
• Design test plan for components. Con-

sider:
 Measures.
 Analysis of measures.
 Way of collecting measures.
 Report of measures.

• Implement components.
• Test components.

3.4 Create a 1st build.
3.5 Review 1st build with stakeholders.

• Compare 1st build with use case model.
• Create a verification report.

3.6 Fix what was wrong on the first build.
3.7 Identify, implement, and test architectural
mechanisms.
3.8 Document architectural mechanisms.
3.9 Update use case model.
3.10 Update database.

Repeat from step 3.3 to 3.9 the times of builds
we want to create.
(At least two builds are suggested per week).

4.0 Controlling.
4.1 Status reports (weekly).
4.2 Review of the last build.
5.0 Closing
5.1 Use case model updated. Detailed descrip-
tion of essential to customer/risky use cases.
5.2 Design documents updated.
5.3 Architectural mechanisms document up-
dated.
5.4 Database updated.
5.5 60% of the components implemented.
5.6 Lessons learned document.

Second iteration plan.

The plan for the second iteration is described as
follows:

1. Next Iteration Plan

1.0 Initiating.
1.1 Review Vision document.
1.2 Review use case model.

2.0 Planning.
2.1 Prepare WBS.
2.2 Identify, discuss, and prioritize risks.
2.3 Prepare schedule and cost baseline for.

• Determine task resources.
• Determine task durations.
• Determine task dependencies.
• Create draft Gantt chart.
• Review Gantt with stakeholders, obtain

commitment, and finalize Gantt chart.

3.0 Executing.
3.1 Implement all scenarios within the most
essential to customer and/or most essential risky
use cases.

• Design components.
• Design test plan for components. Con-

sider:
Measures.
Analysis of measures.
Way of collecting measures.
Report of measures.

• Implement components.
• Test components.

3.2 Create a 1st build.
3.3 Review 1st build with stakeholders.

• Compare 1st build with use case model.
• Create a verification report.

3.4 Fix what was wrong on the first build.
3.5 Identify, implement, and test architectural
mechanisms.
3.6 Document architectural mechanisms.
3.7 Update use case model.
3.8 Update database.

Repeat from step 3.1 to 3.8 the times of builds
we want to create.
(At least two builds are suggested per week).

3.9 Detail the flow of events of the remaining
use cases that were not covered in the Elabora-
tion phase (20% of the total use cases).

3.10 Write supporting documentation.

4.0 Controlling.
4.1 Status reports (weekly).
4.2 Review of the last build.
5.0 Closing
5.1 Use case model updated. Detailed descrip-
tion of essential to customer/risky use cases and
of the remaining use cases that were not cov-
ered in the Elaboration phase.
5.2 Design documents updated.
5.3 Architectural mechanisms document up-
dated.
5.4 Database updated.
5.5 80% of the components implemented.
5.6 Draft of supporting documentation.
5.7 Lessons learned document.

Third iteration plan.
The plan for the third iteration is described as
follows:

1. Iteration Plan after Next

1.0 Initiating.
1.1 Review Vision document.
1.2 Review use case model.

2.0 Planning.
2.1 Prepare WBS.
2.2 Identify, discuss, and prioritize risks.
2.3 Prepare schedule and cost baseline for.

• Determine task resources.
• Determine task durations.
• Determine task dependencies.
• Create draft Gantt chart.
• Review Gantt with stakeholders, obtain

commitment, and finalize Gantt chart.

3.0 Executing.
3.1 Implement all scenarios within all use cases.

• Design components.
• Design test plan for components. Con-

sider:
 Measures.
 Analysis of measures.
 Way of collecting measures.
 Report of measures.

• Implement components.
• Test components.

3.2 Create a 1st build.
3.3 Review 1st build with stakeholders.

• Compare 1st build with use case model.
• Create a verification report.

3.4 Fix what was wrong on the first build.
3.5 Identify, implement, and test architectural
mechanisms.
3.6 Document architectural mechanisms.
3.7 Update use case model.
3.8 Update database.

Repeat from step 3.1 to 3.8 the times of builds
we want to create.
(At least two builds are suggested per week).

3.9 Write supporting documentation.

4.0 Controlling.
4.1 Status reports (weekly).
4.2 Review of the last build.

5.0 Closing
5.1 Use case model detailed.
5.2 Design documents updated.
5.3 Architectural mechanisms document up-
dated.
5.4 Database updated.
5.5 80% of the components implemented.
5.6 Draft of supporting documentation.
5.7 Lessons learned document.

2.4 Transition Phase

Transition starts with the beta deployment and
concludes with final delivery of the solution to
the customer or their support organization. This
phase focuses on fixing remaining defects, train-
ing users, and, in many systems, converting data
from older systems (or older versions of the
same system) and running in a parallel testing
mode for some period to ensure that the system
is ready for final deployment [8].

2.4.1 Objectives of the Transition Phase

Beta test to validate that user expectations are
met.

• Capturing, analyzing, and implementing
change requests. Beta testing is done
during Transition, which provides user
feedback from the beta testers. Some ac-
tivities to gather useful feedback are in-
terviews, on-line queries, submitted
change requests, among others. Then we
should analyze the collected informa-
tion, submit and review change requests
with stakeholders to understand what
changes are required before the final
product release [5]. Change requests are
mainly defects and beta test feedback.
They are also the major planning input
for continuing development. Mainly, the
change requests are only for minor sys-
tem small adjustments, such as fixing
minor bugs, enhancing documentation or
training material or tuning the perform-
ance [5]. Sometimes additional features
must be added, that is, we have to work
with requirements, analysis and design,
implementation, and testing. This can be
a sign of failure on earlier phases. In
most cases we should refrain from add-
ing new features and instead postpone
them to a next development cycle, how-
ever, if the system requires these addi-
tional features for deployment, we
should implement them [5]. Builds with
incorrect file versions or missing files
are common sources of defects at this
stage. Good configuration management
practices and tools reduce these types of
errors [5]. During Transition, we should
invest fair amount of time to improve
documentation, online help, training ma-
terial, user’s guides, operational guides,
and other supporting documentation.
These elements should be tested by the
beta testers in the target environment [5].

• Transition testing. In planning for

Transition testing, we should provide ef-
fort and resources for the following [5]:
 Continued test design and imple-

mentation to support ongoing devel-
opment.

 Regression testing. It will require
variable effort and resources, de-
pending on the chosen approach; for

example, retest everything or retest
to an operational profile.

 Acceptance testing, which may not
require the development of new
tests.

As defects are fixed and beta feedback is
incorporated, successive builds are tested
using a standard test cycle [5]:
 Validate build stability. A subset of

test should be executed to validate
that the build is stable enough to
start detailed test and evaluation.

 Test and evaluate. Implement, exe-
cute, and evaluate test.

 Achieve test objectives. We should
evaluate test results against testing
objectives and perform additional
testing as necessary.
Improve test assets. We should im-
prove test artifacts as needed to sup-
port the next cycle of testing.

• Patch releases and additional beta re-
leases. A patch release is a special bug-
fix release installed on top of the current
baselined release. A patch is used, if se-
rious defects that prevent effective beta
testing are found [5].

• Metrics for understanding when transi-

tion will be complete. Defect metrics
and test metrics, among other things,
help determine when Transition will be
complete [5].

 Defect metrics: The important issue

is to focus on the trend rater than the
actual number of defects. By analyz-
ing a defect trend, we can predict
when a certain threshold value of
open defects will be reached. Two
aspects should be considered [5]
o How many new defects are

found each day.
o How many defects are fixed

each day.

 Test metrics: We can predict how
many new defects can be expected
by determining how many defects
are typically found per test case and

multiplying that by the number of
tests yet to be executed and analyzed
[5].

Train users and maintainers to achieve user
self-reliability.
Operational staff, all users, and maintenance
teams should be trained during Transition. This
training will also give feedback on training ma-
terial, user documentation, and operational
manuals. Training material and instructors train-
ing should be developed during Construction [5].

Prepare deployment site and convert opera-
tional databases.
One aspect to consider when deploying is the
facilities where the final product will be in-
stalled. Some examples are new machines,
power supply or back up power, network instal-
lation, and so on [5]. If the new system replaces
an existing one, data needs to be transferred to
the new system. Even when replacing a system,
the new and old systems may need to run in par-
allel for some time to ensure correct performance
of the new system. For complex deployments,
these activities should be started in previous
phases (Elaboration or Construction) [5].

Achieve stakeholder concurrence that de-
ployment is complete.
Before deploying the software, there is one ac-
tion to be considered: product acceptance test-
ing. Acceptance testing verifies that the software
is ready and can perform those functions and
tasks it was built for [5].

Improve future project performance through
lessons learned.
A post-mortem assessment is advisable at the
end of each project. A post-mortem assessment
consists in analyzing and documenting what
worked well and what didn’t. Based on the re-
sults, the development environment can be im-
proved reflecting what was learned. Another
point to consider is whether any work can be
reused for other projects [5].

2.4.2 Suggested iterations and outputs

Iterations.
We suggest one iteration for this phase. The
following activities are considered:

 Beta testing.
 Get feedback from beta testers.
 Capturing, analyzing, and implement

change requests.
 Keep writing supporting documentation.
 Add new features (if applicable, but not

suggested).
 Do deployment of the new system.
 Do Post-mortem assessment.

Outputs.
The outputs of this phase are as follows:

 Supporting documentation.
 Final release of software.
 Lessons learned document.

2.4.3 Planning for the Transition Phase

The focus of the Transition phase is to ensure
that software is available for its end users. The
Transition phase can span several iterations, and
includes testing the product in preparation for
release, and making minor adjustments based on
user feedback [9]. For Transition, we suggest
one iteration.

2.4.3.1 Project plan
At this phase, all major structural issues were
solved in previous phases. The focus of Transi-
tion is on fine tuning the product, configuring,
installing, and usability issues [5].

Update dates of major milestones.

• Product Release (PR) Milestone. Update
end of Transition date.

Update staffing profile.
Update estimations about staffing for Transition
phase and the following phases. A major partici-
pation of beta testers and end users is expected
in this phase.

Update iterations.
Make adjustments either to the length of the
phase or to the number of iterations.

2.4.3.2 Iteration plan.
One iteration is suggested. The plan of the itera-
tion is described below.

First iteration plan.

For the Transition phase, the plan for the first
iteration is described as follows:

1. Current Iteration Plan

1.0 Initiating.
1.1 Review Vision document.
1.2 Review use case model.

2.0 Planning.
2.1 Prepare WBS.
2.2 Identify, discuss, and prioritize risks.
2.3 Prepare schedule and cost baseline for.

• Determine task resources.
• Determine task durations.
• Determine task dependencies.
• Create draft Gantt chart.
• Review Gantt with stakeholders, obtain

commitment, and finalize Gantt chart.

3.0 Executing.
3.1 Design a test plan for the beta release. Con-
sider:

Measures.
Analysis of measures.
Way of collecting measures.
Metrics.
Criteria for the evaluation.

 Vision document.
 Use cases model.

3.2 Achieve beta testing.
3.3 Get feedback from beta testing

Capture
 Report of measures.
 Report of metrics.
 Change requests.

Analyze
Report of measures.
Report of metrics.
Change requests.

3.4 Implement change request and bug-fixing.
3.5 Create a 1st build.
3.6 Review 1st build with stakeholders.

• Compare 1st build with change request.
• Create a verification report.

3.7 Fix what was wrong on the first build.
3.8 Update use case model.
3.9 Update database.

Repeat from step 3.4 to 3.8 the times of builds
we want to create for bug fixing and change
request.

(At least two builds are suggested per week).

3.10 Keep writing supporting documentation.
3.11 Plan for training. Consider:

End users, system maintainers, and support
staff.

3.12 Refine deployment site and deployment
plan. Consider:

Running new system in parallel with previ-
ous system in testing mode (if applica-
ble).

3.13 Convert operational databases
3.14 Train End users, system maintainers, and
support staff.

If new features have to be added, the iteration is
similar to one in the construction phase, requir-
ing analysis, design, and so on.

4.0 Controlling.
4.1 Status reports (weekly).
4.2 Review of the last build.

Product acceptance test (final release).

5.0 Closing
5.1 Use case model updated.
5.2 Design documents updated.
5.3 Operational database.
5.4 Supporting documentation including train-
ing for end users, maintainers, and support staff.
5.5 Formal acceptance documentation of the
system signed by the sponsor, user or customer
(even all stakeholders).
5.6 Lessons learned document.
5.7 Post-mortem assessment

3. Conclusions

There are different causes that make software
development to fail. One of these factors is the
poor project management. In this work we pre-
sented how to minimize the factor of failure
related to project management by the elaboration
of a guide. The guide provides assistance to a
project manager who is in charge of a small
software project.

The approach of this work integrates best prac-
tices of the PMBOK Guide and CMMI software
engineering standards within a RUP-oriented

software development cycle. PMBOK and
CMMI offers guidelines to consider within a
project and a software project respectively.
There is similitude between some CMMI Level
2 (Staged) key process areas and PMBOK proc-
esses, e.g. Project Planning key process area and
Planning Process Group in the PMBOK Guide.
This similitude allows us to match certain re-
quirements of the CMMI Level 2 (Staged) to
processes of the PMBOK Guide. This approach
allows managers, project leaders, and even a
novice to software development following the
best practices of project management. The sug-
gested plans on this guide covers points from
PMBOK Guide and CMMI Level 2 (Staged) for
every phase of the software development.

PMBOK Guide and CMMI are not itself soft-
ware development cycles. For this reason, the
RUP phases were selected as a software devel-
opment approach. The RUP approach is itera-
tive, architecture-centric, and use-case-driven.
The RUP has iterations in every phase of its
development. Each iteration builds on the work
of the previous iterations to produce an executa-
ble that is one step closer to the final product.
PMBOK Guide best practices in combination
with CMMI were placed into every iteration of
the RUP phases. As a result, managerial activi-
ties support RUP with changing documents, risk
identification and addressing on early phases of
the project, defect detection and correction over
several iterations, and doing integration during
the development and not at the end.

Identification of risks is emphasized on the
guide, as well as commitment of the participants.
Identification of risks allow us to detect possible
causes of deviations from the established plans
and adjust our planning according to the situa-
tion; that is, budget and time frames are con-
trolled and evaluated in every iteration and
phase. In this work, the contact with stake-
holders is common due to the continuous re-
views and feedback from them, so the expecta-
tions of the stakeholders are covered.

References

[1] Jurison, Jaak. 1999. “Software Project Man-
agement: The Manager’s View” Comm. of

Assoc. for Information Systems, vol. 2, article
17. August 13th, 2005 from
http://cais.isworld.org/articles/2-
17/default.asp?View=html&x=33&y=6.

[2] Page-Jones, Meilir. “Praktisches DV-
Projektmanagement”. Germany (Carl Hanser)
1991.

[3] Charette, Robert N. “Why Software Fails”
IEEE Spectrum, vol. 42, no. 9, pp. 36-43, Sep-
tember 2005.

[4] Software Engineering Institute. (2005).
“What is CMMI?”. October 6th, 2005, from
http://www.sei.cmu.edu/cmmi/general/general.ht
ml

[5] Kroll, Per, Kruchten, Philippe. “The Rational
Unified Process Made Easy”, USA, Pearson
Education Inc, 2003.

[6] Schwalbe, Kathy. “Information Technology
Project Management”, 4th ed., Canada, Thomson
Course Technology, 2006.

[7] Kroll, Per. (2004). “Dr. Process: How many
iterations should you have in a project?”, devel-
operWorks Rational. January 20th, 2006 from
http://www-
128.ibm.com/developerworks/rational/library/43
4.html

[8] Spence, Ian, Bittner Kurt. (2004). “Managing
iterative software development with use cases”,
developerWorks Rational. January 27th, 2006
from
http://www-
128.ibm.com/developerworks/rational/library/50
93.html

[9] American Science Institute of Technology.
(1997-2006). “Transition”. January 30th, 2006,
from
http://www.amscitech.com/_common/_topics/U
ML/transition.htm

